ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА 24.2.379.10, СОЗДАННОГО НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С. П. КОРОЛЕВА»

МИНИСТЕРСТВА НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ,

ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЁНОЙ СТЕПЕНИ КАНДИДАТА НАУК

	аттестационное дело м
	решение диссертационного совета от 16 мая 2025 г. № 7
о присуждении Янг	юкиной Марии Викторовне, гражданину Российской Федерации,
учёной степени кан	дидата технических наук.

Диссертация «Разработка метода обеспечения геометрической точности сборки рабочих колёс турбины авиационного ГТД» по специальности 2.5.15. Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов принята к защите 14 марта 2025 г. (протокол заседания № 5) диссертационным советом 24.2.379.10, созданным на базе федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» Министерства науки и высшего образования Российской Федерации (443086, г. Самара, Московское шоссе, 34), приказом Минобрнауки России №229/нк от 14 февраля 2023г.

Соискатель Янюкина Мария Викторовна, 03 августа 1992 года рождения, с отличием окончила федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)» по специальности 160301 Авиационные двигатели и энергетические установки. В 2019 году освоила программу подготовки научно-педагогических кадров в аспирантуре федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» по направлению подготовки 24.06.01 Авиационная и ракетно-космическая техника.

Янюкина М.В. работает в должности старшего преподавателя кафедры инженерной графики федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» Министерства науки и высшего образования Российской Федерации.

Диссертация выполнена на кафедре технологий производства двигателей

федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» Министерства науки и высшего образования Российской Федерации.

Научный руководитель — Болотов Михаил Александрович, доктор технических наук, доцент, доцент кафедры технологий производства двигателей федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева».

Официальные оппоненты:

Семенов Александр Николаевич, доктор технических наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Рыбинский государственный авиационный технический университет имени П.А. Соловьева», профессор кафедры «Технология авиационных двигателей и общего машиностроения»;

Силуянова Марина Владимировна, доктор технических наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)», профессор кафедры 1202 «Технология производства и эксплуатации двигателей летательных аппаратов» -

дали положительные отзывы на диссертацию.

Ведущая организация: федеральное государственное автономное образовательное учреждение высшего образования «Пермский национальный исследовательский политехнический университет», г. Пермь (ПНИПУ), в своём положительном отзыве, подписанном Модорским Владимиром Яковлевичем, доктором технических наук, доцентом, деканом аэрокосмического факультета, директором Центра высокопроизводительных вычислительных систем ПНИПУ, и Швейкиным Алексеем Игоревичем, доктором утверждённом математических наук, доцентом, проректором по науке и инновациям ПНИПУ, указала, что диссертационная работа Янюкиной М.В. является законченной научной работой, в которой она успешно справилась с поставленной задачей разработки метода обеспечения геометрической точности сборки рабочих колёс турбины авиационного ГТД. Диссертационная работа соответствует требованиям Положения о присуждении учёных степеней, предъявляемым к кандидатским диссертациям, а её автор, Янюкина М.В., заслуживает присуждения учёной степени кандидата технических наук по специальности 2.5.15. Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов.

Соискатель имеет 29 опубликованных работ, в том числе по теме диссертации опубликовано 12 работ, из них 4 работы опубликованы в периодических изданиях, рекомендованных ВАК России, 2 статьи - в изданиях, индексируемых в базе

данных Scopus. Суммарный объём принадлежащего соискателю опубликованного по теме диссертации материала составляет 1,9 п.л. Из материалов совместных публикаций лично соискателю принадлежат: разработка модели для расчёта сборочных параметров с учётом жёсткости контактирующих деталей; определение зависимости угла разворота торцевой части бандажной полки относительно замковой полки от силы, возникающей при сборке рабочего колеса турбины ГТД; разработка теоретико-вероятностной модели комплектации сборки рабочего колеса турбины; обработка результатов измерений геометрических параметров профилей лопаток компрессора ГТД; описание алгоритма решения взаимосвязанных размерных цепей; формулировка алгоритма расчёта размерной цепи для сборочного параметра – натяга по стыковым поверхностям бандажных полок лопаток рабочего колеса турбины, с учётом их возможной деформации; формирование расчётной схемы и плана экспериментов для исследования сил, возникающих при сборке рабочего колеса турбины ГТД; последовательности решения задачи определения геометрических параметров в сборочной единице с учётом взаимосвязанных размерных цепей; разработка алгоритма комплектования деталей для выполнения сборки РК турбины авиационного ГТД. В диссертации отсутствуют недостоверные сведения об опубликованных соискателем учёной степени работах, в которых изложены основные научные результаты диссертации.

Наиболее значимые работы:

- 1) Янюкина, М.В. Модель оценки натягов по бандажным полкам лопаток при сборке рабочих колёс турбин / М.В. Янюкина, М.А. Болотов, Е.В. Кудашев // Динамика и виброакустика. 2024. Т. 10. №2. С. 7-17. (научная статья 1,375 п.л./0,9 п.л.);
- 2) Болотов, М.А. Теоретико-вероятностная оценка объёмов незавершенного производства при сборке рабочего колеса турбины / М.А. Болотов, Т.В. Ефремова, М.В. Янюкина // Известия Самарского научного центра Российской академии наук. 2019. Т. 21. №1. С. 86-90. (научная статья 0,58 п.л./0,25 п.л.);
- 3) Янюкина, М.В. Математическое моделирование погрешности сборочных параметров в авиадвигателестроении / М.В. Янюкина, И.Г. Бедрин // Вестник Рыбинской государственной авиационной технологической академии им. П.А. Соловьева. 2017. Т.41. №2. С. 348-351. (научная статья 0,46 п.л./0,3 п.л.);
- 4) Янюкина, М.В. Прогнозирование точности сборочных параметров рабочих колёс турбин / М.В. Янюкина, М.А. Болотов // труды Международной научно-технической конференции «Перспективные информационные технологии». 2018. С. 1167-1170 (материалы конференции 0,25 п.л./0,15 п.л.).

На диссертацию и автореферат поступило 11 отзывов от организаций:

- 1) ПАО «ОДК-Кузнецов», отзыв составлен и подписан Хвацковым Борисом Евгеньевичем, к.т.н., ведущим специалистом ОИР СГК;
- 2) ПАО «ОДК-Сатурн», отзыв составлен и подписан Заваркиным Вадимом Николаевичем, к.т.н, главным конструктором морских ГТД и ГГТА, Левиновой Ольгой Николаевной, к.т.н., начальником конструкторского отдела композиционных материалов и выходных устройств, учёным секретарём, утверждён Шмотиным Юрием Николаевичем, д.т.н., профессором, генеральным конструктором;
- 3) ПК «Салют» АО «ОДК», отзыв составлен и подписан Фетисовым Максимом Викторовичем, к.т.н., заместителем главного конструктора ОГК НТЦ «МКБ «Гранит», Филипповым Дмитрием Валерьевичем, к.т.н., руководителем направления технической подготовки производства филиала АО «ОДК-Сервис» «Арамиль», утверждён Потаповым Алексеем Юрьевичем, директором по НИР и ОКР НТБ «МКБ «Гранит»;
- 4) АО «Казанское моторостроительное производственное объединение», отзыв составлен и подписан Кусюмовым Сергеем Александровичем, к.т.н., доцентом, инженер-конструктором отдела главного конструктора газотурбинных двигателей, Скащенко Алексеем Юрьевичем, заместителем генерального директора по техническому развитию главным инженером и Гурьяновым Артёмом Александровичем, начальником отдела персонала;
- 5) АО «Новые инструментальные решения», отзыв составлен и подписан Коряжкиным Андреем Александровичем, д.т.н., генеральным директором;
- 6) ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», отзыв составлен и подписан Сотовым Антоном Владимировичем, к.т.н., ведущим научным сотрудником лаборатории «Дизайн материалов и аддитивного производства»;
- 7) ФГАОУ ВО «Московский политехнический университет», отзыв составлен и подписан Саушкиным Борисом Петровичем, д.т.н., профессором, профессором кафедры технологий и оборудования машиностроения;
- 8) ФГБОУ ВО «Новосибирский государственный технический университет», отзыв составлен и подписан Ахмед Солиман М.Э., к.т.н., доцент кафедры СиВС, факультет летательных аппаратов кафедра самолете- и вертолетостроения;
- 9) ФГБОУ ВО «Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова», отзыв составлен и подписан Андрюшкиным Александром Юрьевичем, к.т.н., доцентом, заведующим кафедрой «Технология конструкционных материалов и производства ракетно-космической техники», утверждён Вороновым Владимиром Александровичем, и.о. проректора по научной деятельности и инновационному развитию;

- 10) ФГБОУ ВО «Тольяттинский государственный университет», отзыв составлен и подписан Заятровым Алексеем Викторовичем, к.т.н., начальником научно-исследовательской лаборатории «Метрологическое обеспечение и испытания»;
- 11) ФГБОУ ВО «Самарский государственный технический университет», отзыв составлен и подписан Кудиновым Игорем Васильевичем, д.т.н., профессором, заведующим кафедрой «Физика».

Критическими замечаниями в представленных отзывах являются:

- 1 В формулах расчёта сил взаимодействия бандажных полок не учитывается крутильная жесткость лопаток, которая существенно зависит от геометрических параметров конкретных лопаток.
- 2 При оценке эффективности применения компьютерного расчёта при сборке РК не учтена трудоёмкость процесса измерения геометрических параметров лопатки и замка диска, необходимых для решения размерных цепей.
- 3 Отсутствует описание конечно-элементной модели (КЭМ) в программном комплексе ANSYS, с помощью которой выполнялось моделирования влияния монтажных усилий при сборке на угол разворота бандажной полки и граничные условия моделирования, а также анализа этих возникающих усилий.
- 4 Ограниченность охвата влияющих факторов. Несмотря на глубокую проработку темы натягов в посадках, в работе преимущественно рассматриваются геометрические и посадочные параметры. В то же время, остаются в стороне такие важные аспекты, как реальное распределение остаточных напряжений после прессовой посадки, микросмятие поверхностей, а также влияние шероховатости на надёжность соединения. Более комплексный подход позволил бы шире интерпретировать полученные результаты.

В полученных отзывах отмечено, что указанные замечания в целом не снижают высокой оценки работы, а сама диссертационная работа соответствует требованиям «Положения о присуждении учёных степеней», предъявляемым к кандидатским диссертациям, и сделано заключение о возможности присуждения Янюкиной М.В. учёной степени кандидата технических наук по специальности 2.5.15. Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов.

Выбор Семенова Александра Николаевича в качестве официального оппонента обосновывается его глубокими знаниями в области моделирования и управления сборочными процессами узлов газотурбинных двигателей.

Выбор Силуяновой Марины Владимировны в качестве официального оппонента обосновывается её глубокими знаниями и опытом в области технологической подготовки производства деталей и узлов авиационных газотурбинных двигателей.

Выбор федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет» в качестве ведущей организации связан с наличием компетенций в области сборки газотурбинных двигателей, исследования процессов изготовления лопаток, и обосновывается наличием компетентных специалистов, таких как д.т.н., доцент, декан аэрокосмического факультета, директор Центра высокопроизводительных вычислительных систем Владимир Яковлевич Модорский, д.т.н., доцент, доцент кафедры Инновационные технологии машиностроения Сергей Михайлович Белобородов.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

разработаны:

- метод обеспечения геометрической точности сборки рабочих колёс турбины авиационного ГТД, предусматривающий разделение и оценку влияющих на геометрические параметры колёс факторов качки и силового взаимодействия между лопатками от закрутки бандажных полок при монтаже с использованием модели и функциональной зависимости, применимых в производстве;
- модель оценки натягов по стыковым поверхностям бандажных полок соседних лопаток, учитывающая влияние их качки в замковых пазах диска на взаимное положение в РК турбины авиационного ГТД.

предложены:

- функциональная зависимость для уточнения значений натягов по стыковым поверхностям бандажных полок лопаток РК посредством учёта их кручения, вызванного взаимным действием возникающих при сборке сил;
- алгоритм комплектования деталей для выполнения сборки РК турбины авиационного ГТД с учётом её особенностей, включающих кручение лопаток и их качку в пазах диска.

доказано, что использование метода обеспечения геометрической точности сборки рабочих колёс турбины авиационного ГТД позволяет снизить трудоёмкость процесса за счёт уменьшения количества предварительных сборок с 5 до 2.

Теоретическая значимость исследования обоснована тем, что: изложены:

– выявленные в ходе анализа рабочих чертежей лопатки, диска и РК размерные цепи для геометрических сборочных параметров – натяга по стыковым поверхностям бандажных полок лопаток и зазоров по замковым и бандажным полкам лопаток, представленные цепи имеют обобщённый характер и устанавливают взаимосвязи между точностью сборочных параметров РК и

размерно-точностными параметрами формообразующих операций изготовления лопатки и диска;

 – алгоритм расчёта геометрических сборочных параметров РК турбины с использованием предложенных моделей и зависимостей;

изучено влияние качки лопаток в пазах диска на величины геометрических параметров РК турбины и их зависимостей от точности изготовления входящих деталей, исследования показали, что:

- качка лопаток, а именно их перемещение в радиальном направлении (вдоль оси Y), оказывает заметное влияние на величину натяга;
- в рассматриваемом РК относительная разница значений натяга для двух соседних лопаток без учёта качки и с её учётом может достигать 25%, что является значимой величиной;
- после сборки рабочего колеса соседние лопатки могут находиться в жёсткой сцепке, образуя группы количеством до 9 единиц, что говорит о возможности возникновения зазоров;
- возможность качки лопаток в диске описывается практической кривой распределения, которая может быть обобщена Гамма-распределением;

доказана эффективность применения метода обеспечения геометрической точности сборки РК турбины авиационного ГТД, выполненный компьютерный расчёт сборочного процесса РК позволил определить, что для обеспечения 100 % собираемости одного рабочего колеса, содержащего 91 лопатку, при использовании предложенного метода необходимый объём незавершённого производства, составляет 153 лопатки, в том время как при традиционном подходе расчётный задел должен составлять 2-3 комплекта лопаток.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

- применение разработанного метода позволяет решать практические задачи для обеспечения заданной геометрической точности сборки РК турбины авиационного ГТД, при этом сокращая временные затраты, что повышает эффективность процесса сборки. Представленные модель и функциональная зависимость могут быть использованы при проведении прочностных расчётов изделия на различных режимах его работы с учётом формы контакта бандажных полок лопаток РК турбины;
- материалы диссертационной работы **использовались** для **совершенствования** технологического процесса сборки рабочего колеса турбины турбокомпрессора ТК35В-36 в ООО «Специальное конструкторское бюро турбонагнетателей», что позволило снизить трудоёмкость процесса сборки рабочего колеса турбины за счёт уменьшения количества предварительных сборок с 5 до 2 (подтверждено актом внедрения от 20 января 2025 года);

– результаты диссертационного исследования **включены в курс** «Технологическая подготовка механосборочного производства» направления подготовки 24.03.05 «Двигатели летательных аппаратов» в рамках учебного процесса Самарского национального исследовательского университета имени академика С.П. Королева (акт внедрения от 4 февраля 2025 года);

определены перспективы практического использования предложенного метода обеспечения геометрической точности сборки РК турбины авиационного ГТД на предприятиях авиационного отрасли, таких как ПАО «ОДК-Кузнецов» (г. Самара), АО «ОДК-ПМ» (г. Пермь), ПАО «ОДК-УМПО» (г. Уфа), ПАО «ОДК-Сатурн» (г. Рыбинск), АО «218 АРЗ» (г. Гатчина), АО НПЦ Газотурбостроения «Салют» (г. Москва) и иных.

Оценка достоверности результатов исследования выявила:

результаты экспериментальных исследований получены на поверенных средствах измерений, аттестованном испытательном оборудовании, обеспечивающем воспроизводимость результатов исследования;

теория построена на известных, проверенных положениях математического анализа, линейной алгебры, теории вероятностей, математической статистики, аналитической геометрии, вычислительной математики и согласуется с опубликованными данными по теме диссертации и смежным темам;

идея базируется на системном анализе практики и научном обобщении передового опыта в области технологии сборки рабочих колёс турбин авиационных двигателей, а также оценке геометрических сборочных параметров узлов;

установлено качественное и количественное совпадение результатов численных и натурных экспериментов, а также результатов, полученных автором диссертации, с результатами, представленными в независимых литературных источниках по тематике исследования, когда такое сравнение является обоснованным;

использовано лицензионное программное обеспечение (MATLAB, ANSYS, Siemens NX, КОМПАС-3D V15), а также известные численные методы, обладающие высокой точностью при проведении вычислительных экспериментов.

Личный вклад соискателя состоит в непосредственном участии соискателя в получении исходных данных, проведении аналитических и экспериментальных исследований, разработке алгоритма комплектования лопаток для сборки рабочего колеса турбины с использованием разработанного метода обеспечения точности сборки, получении результатов аналитических и экспериментальных исследований и подготовке основных публикаций по выполненной работе. Все результаты, выносимые на защиту, получены автором

лично, либо при его определяющем личном участии.

В диссертации отсутствует заимствованный материал без ссылки на автора и (или) источник заимствования, результаты научных работ, выполненные соискателем учёной степени в соавторстве, без ссылок на соавторов.

В ходе защиты диссертационной работы не было высказано критических замечаний. Соискатель Янюкина М.В. ответила на задаваемые ей в ходе заседания вопросы и привела собственную аргументацию по высказанным замечаниям.

Диссертация Янюкиной М.В. является законченной научноквалификационной работой, соответствует специальности 2.5.15. Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов и отвечает критериям, предъявляемым к диссертациям на соискание учёной степени кандидата наук. В диссертации содержится новое научно обоснованное техническое и технологическое решение — снижение трудоёмкости сборочного процесса за счёт использования разработанного метода обеспечения геометрической точности сборки рабочих колёс турбины авиационного ГТД, отличающегося учётом деформации лопаток и их качки в пазах диска, имеющее существенное значение для развития страны.

На заседании 16 мая 2025 г. диссертационный совет за новое научно обоснованное техническое и технологическое решение, имеющее существенное значение для развития страны, принял решение присудить Янюкиной Марии Викторовне учёную степень кандидата технических наук.

При проведении тайного голосования диссертационный совет в количестве 12 человек, из них 6 докторов наук по специальности рассматриваемой диссертации, участвовавших в заседании, из 14 человек, входящих в состав совета, проголосовали: за — 12, против — 0, недействительных бюллетеней — 0.

Председатель

диссертационного совета 24.2.379.10

академик РАН, д.т.н., профессор

аки Шахматов Евгений Владимирович

Учёный секретарь

д.т.н., доцент

16.05.2025

диссертационного совета 24.2.379.10

Виноградов Александр Сергеевич