Новости

Лекция1

  Лекции: 1 2 3 4 5 6 7 8 9 10 11 12 13

I ВВЕДЕНИЕ

1. Содержание и задачи курса начертательной геометрии.

Трудно указать такой вид человеческой деятельности, где, решая ту или иную техническую или нетехническую задачу, не приходилось бы прибегать к помощи изображений машин и механизмов, планов строений и т.п.

К. Маркс указывал, что всякий процесс труда человека заканчивается результатом, который уже в начале этого процесса имелся в его представлении: "Паук совершает операции, напоминающие операции ткача, и пчела постройкой своих восковых ячеек посрамляет некоторых людей - архитекторов. Но самый плохой архитектор от наилучшей пчелы с самого начала отличается тем, что, прежде чем строить ячейку из воска, он уже построил её в своей голове".

Сколь широка и многогранна деятельность человека, столь и различны требования, предъявляемые к форме и содержанию изображений. Одни из них должны производить на глаз человека такое же впечатление, какое производит и сам изображаемый предмет, иначе говоря, изображение должно обладать достаточной наглядностью. В другом случае изображение должно быть, в первую очередь, геометрически равноценно оригиналу, оно должно давать полную геометрическую и размерную характеристику изображаемого предмета. Этому требованию должен отвечать, например, всякий машиностроительный чертёж.

Наконец, к изображению могут быть предъявлены оба указанных условия одновременно - наглядность изображения должна сочетаться с геометрической равноценностью оригиналу.

Изображения различных предметов и объектов не являются самоцелью, они дают возможность решать инженеру по ним различные технические задачи.

Однако не всякое изображение может быть использовано для решения технических задач. Для этого оно, в первую очередь, должно быть геометрически равноценно изображаемому объекту, то есть, построено по определённому геометрическому закону. Вопросами исследования геометрических основ построения изображений предметов на плоскости, вопросами решения пространственных геометрических задач при помощи изображений занимается одна из ветвей геометрии - НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

Начертательная геометрия относится к числу математических наук. Для неё характерна та общность методов, которая свойственна каждой математической науке. Методы начертательной геометрии находят самое широкое применение в объектах изучения самой различной природы: в механике, архитектуре и строительстве, химии, геодезии, геологии, кристаллографии и т.д.

Но наибольшее значение и применение методы начертательной геометрии нашли в различных областях техники при составлении различного вида технических чертежей: машиностроительных, строительных, различного рода карт и т.д. Начертательная геометрия, таким образом, является звеном, соединяющим математические науки с техническими.

Начертательная геометрия входит в группу общетехнических дисциплин, составляющих основу всякого инженерного образования. Она учит грамотно владеть выразительным техническим языком - языком чертежа, умению составлять и свободно читать чертежи, решать при помощи чертежей различные инженерно-технические задачи.

Кроме того, изучение начертательной геометрии способствует развитию у студентов пространственных представлений и пространственного воображения - качеств, характеризующих высокий уровень инженерного мышления и необходимых для решения прикладных задач.

В процессе изучения начертательной геометрии достигаются и другие цели, расширяется общенаучный кругозор студентов, развиваются навыки логического мышления, внимательность, наблюдательность, аккуратность и другие качества, развитие которых является одной из задач обучения и воспитания в высшей технической школе.

Предметом начертательной геометрии (в узком смысле) является изучение теории построения плоских моделей пространств и теории и практики решения пространственных задач на таких плоских моделях.

Цели курса:

  1. Научить пространственно мыслить и отображать на плоскости трёхмерные геометрические образы (фигуры).
  2. Развить способность мысленного восприятия пространственного геометрического образа по его отображению на плоскости, т.е. научить читать чертёж.
    (Таким образом, мы решаем две задачи: прямую и обратную. Объёмный предмет отображаем на плоскости - прямая задача. По плоскому чертежу представляем объёмную форму предмета - обратная задача. Прочесть чертёж - это представить себе пространственное изображение предмета.)
  3. Сообщить знания о методах решения на плоскости пространственных метрических и позиционных задач.

 

2. Роль русских и советских учёных в разработке и развитии методов изображений.

Сведения и приёмы построений, обуславливаемые потребностью в плоских изображениях пространственных форм, накапливались постепенно с древних времён. В течение продолжительного периода плоские изображения выполнялись как изображения наглядные. С развитием техники первостепенное значение приобрёл вопрос о применении метода, обеспечивающего точность и удобоизмеримость изображений, т.е. возможность точно установить место каждой точки изображения относительно других точек или плоскостей и путём простых приёмов определить размеры отрезков линий и фигур. Постепенно накопившиеся отдельные правила и приёмы построения таких изображений были приведены в систему и развиты в труде французского учёного Монжа, изданном в 1799 году. Изложенный Гаспаром Монжем (1746-1818) метод - метод ортогонального проецирования - обеспечивал выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остаётся основным методом составления технических чертежей.

Чертёж - язык инженера, начертательная геометрия - грамматика этого языка.

В нашей стране начертательную геометрию начали преподавать с 1810 года в ЛИЖТе - первом ВУЗе страны, только что организованном. Лекции там читал Я.А. Севастьянов (1796-1849), с именем которого связано появление первого оригинального труда под названием "Основания начертательной геометрии" (1821 г.), в основном посвящённого изложению метода Монжа.

Крупный след в развитии начертательной геометрии в России в XIX веке оставили Н.И. Макаров (1824-1904) (адмирал Макаров, погибший в Порт-Артуре) и В.И. Курдюнов (1853-1904).

Если начертательная геометрия как предмет возникла из нужд практики и в середине XIX века она расширила свои разделы, то к началу XX века аналитические методы, применённые в начертательной геометрии, вышли на первый план, точность графических методов не удовлетворялась и начертательная геометрия пошла на убыль. Последними книгами были книги Н.А. Рышина (1877-1942) и В.О. Гордона.

С появлением трудов Н.Ф. Четверухина (1891-1973) начертательная геометрия была выведена из застоя. Н.Ф. Четверухин стал рассматривать начертательную геометрию как самостоятельную науку (не связанную с черчением). Он первый увидел, что методами начертательной геометрии можно решать сложные конструктивные задачи. Появилась "Прикладная геометрия" и начался её расцвет. За период с конца 40-х годов начертательная геометрия развивалась и расширялась. В науке большая роль принадлежит И.И. Котову (1905-1975) и его ученикам. После смерти Н.Ф. Четверухина начался процесс сокращения часов по начертательной геометрии и произошел застой. В 1982 г. вопрос в ВАКе был решён положительно и предмет восстановлен.

3. Виды проецирования:

Методом начертательной геометрии является графический метод, основанный на операции проецирования - бинарная конструктивная модель пространства, пространственных форм и отношений, т.е. метод плоскостных (бинарных, двумерных) моделей пространств.

Нам необходимо строить плоскостные модели пространств и по ним уметь решать разнообразные пространственные задачи. Если трёхмерные пространственные формы сформированы на двухмерной плоскости - это чертёж. Чертёж - это определённая совокупность точек и линий на плоскости. Начертательная геометрия занимается построением чертежей пространственных форм и отношений. Какие же двухмерные чертежи могут быть моделями, которые бы отображали свойства пространства, пространственные формы и отношения?

Тут возникает два вопроса:

  1. Как образовать, как получить такие модели? (Как строить такие чертежи, чтобы они были отображением пространства)
  2. Что изображать на этой модели (чертеже), чтобы эта модель могла отражать пространственные формы и отношения?

 

Отвечая на первый вопрос, можно сказать, что каждый чертёж построен по методу проекций. Существует два вида проецирования: центральное и параллельное.

3.1 Центральное проецирование.

Центральное проецирование - наиболее общий случай получения проекций геометрических фигур. Сущность его состоит в следующем:


Рис.1
Пусть даны плоскость (тэта) и точка S (рис.1). Возьмём в пространстве произвольную точку A, причём A S A S. Нам нужно построить центральную проекцию точки А. Для этого через заданные точки S и A проведём луч [SA). Центральной проекцией точки А будет точка пересечения луча [SA) с плоскостью .
[SA) = A

Плоскость называют плоскостью проекций, точку S - центром проекции, полученную точку A - центральной проекцией точки А на плоскость , [SA) - проецирующим лучом.

Аппарат центрального проецирования задан, если задано положение плоскости проекций и центра проекций S. Если аппарат проецирования задан, то всегда можно определить положение центральной проекции любой точки пространства на плоскости проекций.

Например: Дана точка B. Проведём проецирующий луч [SB) и определим точку встречи его с плоскостью . Это и есть центральная проекция B точки B при заданном аппарате проецирования (,S).

Если точка С расположена так, что проецирующий луч [SС) , то он пересечёт плоскость проекций в несобственной точке С.

При заданном аппарате проецирования (,S) каждая точка пространства будет иметь одну и только одну центральную проекцию (т.к. через две различные точки можно провести одну и только одну прямую). Обратное утверждение не имеет смысла, так как точка A может быть центральной проекцией любой точки, принадлежащей прямой (AS) (Например центральные проекции точек A и D совпадают).

Отсюда следует, что одна центральная проекция точки не определяет положение точки в пространстве.


Рис.2
Для определения положения точки в пространстве необходимо иметь две центральные проекции точки, полученные из двух различных центров проецирования (рис.2).

Достоинство центрального проецирования - наглядность. Недостаток - степень искажения изображения зависит от расстояния центра проекций до плоскости проекций, поэтому центральное проецирование неудобно для простановки размеров.

В машиностроительном черчении применяется параллельное проецирование.

3.2 Параллельное проецирование.

Параллельное проецирование является частным случаем центрального проецирования, когда центр проекций лежит в несобственной точке S, поэтому все проецирующие лучи параллельны.


Рис.3
Аппарат параллельного проецирования задан, если задано положение плоскости проекций и направление проецирования S.

Все свойства центрального проецирования справедливы для параллельного проецирования:

  1. При задании аппарата параллельного проецирования каждая точка пространства имеет одну и только одну параллельную проекцию. Обратное утверждение не имеет места.
  2. Для задания точки в пространстве необходимо иметь две её параллельные проекции, полученные при двух различных направлениях проецирования.

 

Параллельное проецирование делится на:

 

 

Основные инвариантные (независимые) свойства параллельного проецирования.

 

При параллельном проецировании нарушаются метрические характеристики геометрических фигур (происходит искажение линейных и угловых величин), причём степень нарушения зависит как от аппарата проецирования, так и от положения проецируемой геометрической фигуры в пространстве по отношению к плоскости проекции.


Рис.4
Пример:
(A,B,C,D)
|AB||AB|, |BC||BC| и т.д.
|DAB||DAB|, |ABC||ABC| и т.д.

Но наряду с этим, между оригиналом и его проекцией существует определённая связь, заключающаяся в том, что некоторые свойства оригинала сохраняются и на его проекции. Эти свойства называются инвариантными (проективными) для данного способа проецирования.

В процессе параллельного проецирования (получения проекций геометрической фигуры по её оригиналу) или реконструкции чертежа (воспроизведения оригинала по заданным его проекциям) любую теорему можно составить и доказать, базируясь на инвариантных свойствах параллельного проецирования, которые в начертательной геометрии играют такую же роль, как аксиомы в геометрии.

Следовательно, можно утверждать, что в начертательной геометрии существуют две системы аксиом:

 

Отсюда ясно, насколько важно выяснить и хорошо усвоить эти инвариантные свойства.


1. Проекция точки есть точка.

2. Проекция прямой линии на плоскость есть прямая линия.

(Для всех прямых l, не параллельных направлению проецирования, проекция прямой есть прямая.)

3. Если в пространстве точка инцидентна (принадлежит) линии, то проекция этой точки принадлежит проекции линии.

Следствие: Если прямые пересекаются в точке K, то проекции прямых пересекаются в проекции точки - K.

4. Проекции взаимно параллельных прямых также взаимно параллельны.

5. Отношение отрезков прямой равно отношению проекций этих отрезков.

6. Если плоская фигура параллельна плоскости проекций, то на эту плоскость она проецируется в конгруэнтную фигуру.

При параллельном переносе плоскости проекций величина проекций не изменится, следовательно, мы можем не рисовать положение плоскости проекций.


Для построения обратимого чертежа необходимо иметь две взаимосвязанные проекции оригинала.

Поэтому только прямоугольное (ортогональное) проецирование, по крайней мере, на две взаимно перпендикулярных плоскости проекций является основным методом построения технического чертежа (метод Монжа).

Ортогональное (прямоугольное) проецирование обладает рядом преимуществ перед центральным и параллельным (косоугольным) проецированием.

К ним в первую очередь следует отнести:

 

Поэтому этот метод удобен для простановки размеров.

 

Пространственная модель координатных плоскостей проекций.

 

Положение точки (а следовательно, и любой геометрической фигуры) в пространстве может быть определено, если задана координатная система отнесения (наиболее удобна - декартова). Рассмотрим макет из трёх взаимно перпендикулярных плоскостей.


Рис.5
H (П1) - горизонтальная плоскость проекций
V (П2) - фронтальная плоскость проекций
W (П3) - профильная плоскость проекций
Плоскости проекций при пересечении образуют оси координат:
x - ось абсцисс
y - ось ординат
z - ось аппликат
Оси координат при пересечении образуют начало координат O (origo - начало).

Плоскости проекций бесконечны. Они делят пространство на 8 частей - октантов.

В начертательной геометрии часто применяется система V/H - двух плоскостей проекций. При этом пространство делится на 4 четверти - квадранты.

Недостаток пространственной модели - её громоздкость, поэтому пользуются плоскостной моделью координатных плоскостей проекций - эпюром. Построение эпюра рассмотрим на примере построения эпюра точки.

II ТОЧКА И ПРЯМАЯ ЛИНИЯ

1. Проецирование точки на две плоскости проекций.

Точка - основное, неопределяемое понятие геометрии. Она не может быть определена более элементарными понятиями. Точка не имеет размеров.

Пусть заданы точка А и три взаимно перпендикулярных плоскости проекций. Построим проекции точки в первом октанте (рис.6).


Рис.6
Из точки А опустим перпендикуляры на плоскости проекций. Положение точки А в пространстве определяется тремя координатами (xA, yA, zA), показывающими величины расстояний, на которые точка удалена от плоскости проекций.
A1,A2,A3 - ортогональные проекции точки А.
A1 - горизонтальная проекция точки А
A2 - фронтальная проекция точки А
A3 - профильная проекция точки А

Отрезки:

 

Прямые (AA1),(AA2),(AA3) - проецирующие прямые (проецирующие лучи):

 

2. Проецирование точки на три плоскости проекций.

Чтобы получить эпюр точки, нужно преобразовать пространственный макет.
Фронтальная проекция точки А - A2 остаётся на месте, как принадлежащая плоскости V, которая не меняет своего положения.
Горизонтальная проекция A1 вместе с горизонтальной плоскостью проекций H, совмещаемой с плоскостью чертежа, опустится вниз и расположится на одном перпендикуляре к оси x с фронтальной проекцией A2.
Профильная проекция A3 будет вращаться вправо вместе с профильной плоскостью проекций W до совмещения с плоскостью чертежа. При этом A3 будет принадлежать перпендикуляру к оси z, проведённому через A2, и удалена от оси z на такое же расстояние, на которое горизонтальная проекция A1 удалена от оси x.

Таким образом, ЭПЮРОМ (комплексным чертежом точки) называется плоское изображение, полученное в результате ортогонального проецирования на две или несколько взаимно перпендикулярных плоскостей путём последующего совмещения этих плоскостей с одной плоскостью проекций (рис.7).


Рис.7
Биссектрису угла между осями y называют постоянной прямой Ко эпюра Монжа.

Полученная модель (эпюр) несёт такую же информацию, какая содержится в пространственном макете.

Действительно, чтобы определить положение точки А в пространстве, необходимо знать 3 её координаты (x,y,z) - длины отрезков [AA3],[AA2],[AA1]. Величины этих отрезков могут быть определены на эпюре.
[AA3]=[A1Ay]=[A2Az]
[AA2]=[A1Ax]=[A3Az]
[AA1]=[A2Ax]=[A3Ay]

Горизонтальная проекция точки А определяется абсциссой x и ординатой y, фронтальная - x и z, профильная - y и z, т.е.
A1(x,y)
A2(x,z)
A3(y,z)

Отсюда следует, в частности, что:

  1. положение точки в пространстве вполне определяется положением её двух ортогональных проекций (т.к. по двум любым заданным ортогональным проекциям точки всегда можно построить недостающую её третью ортогональную проекцию)
  2. горизонтальная и фронтальная проекции любой точки принадлежат одному перпендикуляру (одной линии связи) к оси x
    горизонтальная и профильная проекции любой точки принадлежат одному перпендикуляру (одной линии связи) к оси y
    фронтальная и профильная проекции любой точки принадлежат одному перпендикуляру (одной линии связи) к оси z

 

 

Построение безосного эпюра точки.

 

В тех случаях, когда нет необходимости в определении положения точки (или любой другой геометрической фигуры) относительно координатной системы плоскостей проекций, можно не указывать на эпюре оси координат, т.е. для безосного чертежа плоскости проекций принимаются неопределёнными до параллельного переноса (могут перемещаться параллельно самим себе) а значит, не рисуются и не обозначаются на эпюре.






Заметили ошибку в тексте? Выделите ее мышкой и нажмите Ctrl+Enter

Система Orphus