МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (СГАУ)

РАСЧЁТ ЛЁТНЫХ ХАРАКТЕРИСТИК САМОЛЁТА

Электронные методические указания

УДК 629.7.015 (075)

Авторы: Баяндина Тамара Александровна,

Кочян Антонина Грачевна

Баяндина, Т. А., Кочян, А.Г. Расчёт лётных характеристик самолёта [Электронный ресурс]: электр. методические указания / Т. А. Баяндина, А. Г. Кочян; Минобрнауки России, Самар. гос. аэрокосм. ун-т им. С. П. Королева (нац. исслед. ун-т). - Электрон. текстовые и граф. дан. (0,63 Мбайт). - Самара, 2012. - 1 эл. опт. диск (CD-ROM). - Систем. требования: ПК Pentium; Windows 98 или выше.

Настоящее издание предназначено для студентов старших курсов, обучающихся по специальностям: 160100 самолёто- и вертолётостроение; 162500.62 техническая эксплуатация авиационных электросистем и пилотажно-навигационных комплексов. Излагается методика выполнения двух лабораторных работ по динамике полёта самолёта. Работы посвящены расчёту основных лётных характеристик самолёта с турбореактивными двигателями (ТРД). Соответствующий теоретических материал излагается в лекциях по курсу «Динамика полёта самолёта».

Целью лабораторных работ 3 и 4 является овладение навыками расчёта лётных характеристик самолёта, освоение упрощённого метода тяг, излагаемого в курсе лекций, а также методики расчёта дальности крейсерского полёта и взлётно-посадочных характеристик самолёта.

ОБЕСПЕЧЕНИЕ ЛАБОРАТОРНЫХ РАБОТ

Базовым самолётом, применительно к которому проводятся расчёты, является самолёт Ту-154А [1]. В методических указаниях приведён общий вид самолёта (рисунок 1, а), дана сводка его основных геометрических и весовых данных, даны аэродинамические силовые характеристики самолёта в виде семейства полётных и взлётно-посадочных поляр, а также зависимостей $C_{ya}(\alpha)$ — рисунок 1, б, в. Приведены также высотноскоростные (силовые и расходные) характеристики двигателя — двухконтурного ТРД с малой степенью двухконтурности (рисунок 1, г, д).

Характеристики стандартной атмосферы $\rho(H)$, $\Delta(H)$, a(H), $q_a(H)$ для пяти расчётных высот: H=0, 4 км, 8 км, 11 км, 13 км приведены в таблице 1 ($\rho_0=1$,223 кг/м³).

Каждый студент ведёт расчёт самостоятельно, согласно данным, соответствующим шифру варианта, который выдаётся преподавателем. Работы оформляются на специальном бланке, в который, при необходимости, вкладывается дополнительный лист миллиметровки. После сдачи зачёта по лабораторной рабо-

те бланк сдаётся преподавателю, но может выдаваться студенту по его желанию в период подготовки к экзамену.

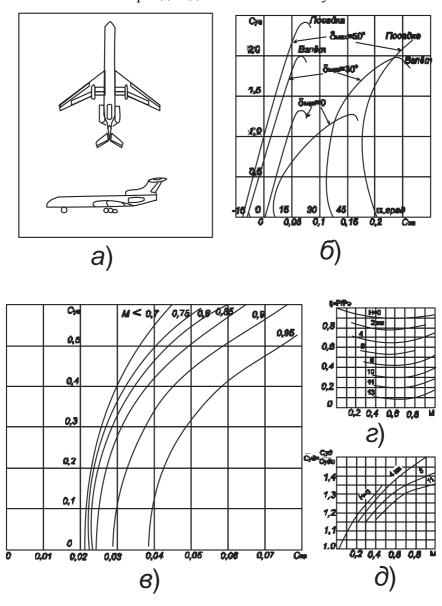


Рисунок 1

Самолёт Ту-154 (СССР) – пассажирский, реактивный

Масса взлётная	94000 кг
Масса топлива	33000 кг
Масса коммерческой нагрузки	18000 кг
Длина самолёта	47,9 м
Размах крыла	37,55 м
Площадь крыла	180 m^2
Угол стреловидности	35°

Средняя относительная толщина профиля крыла -0.12.

Двигатели: три двухконтурных TPД – статистическая тяга на номинальном режиме – 3x95 кH; на взлётном (максимальном) режиме – 3x105 кH; при реверсе – 2x36 кH.

Удельный расход топлива $C_{yд_0} = 0.058 \ {\rm кг/H} \cdot {\rm ч}.$

Таблица 1

Высота Н, км	Относительная	Скорость	Скоростной
	плотность	звука <i>а</i> , м/с	напор при
	$\Delta = \rho/\rho_0$		V = a
			q_a , $\kappa H/m^2$
0	1,000	340	70,94
4	0,669	324	43,14
8	0,429	308	24,91
11	0,297	295	15,83
13	0,217	295	11,53

ВАРЬИРУЕМЫЕ ПАРАМЕТРЫ

Средняя полётная масса самолёта

$$m_{\rm cp} = m = k_1 m_{\rm взл};$$

масса топлива, расходуемая на крейсерском участке,

$$m_{\text{т крейс}} = k_2 m_{\text{т}};$$

статистическая тяга

$$P_0 = k_3 P_{0 \text{ HOM}}$$
.

Номинальные значения параметров входят в состав исходных данных самолёта:

$$m_{\text{взл}} = 94000 \text{ кг}, \qquad m_{\text{т}} = 33000 \text{ кг},$$

$$P_{0 \text{ HOM}} = 3 \times 95 \text{ kH} = 285000 \text{ H}.$$

Посадочная масса рассчитывается по формуле

$$m_{\text{пос}} = m_{\text{взл}} - m_{\text{\tiny T}} (k_2 + 0.10).$$

В таблице 2 приведены варианты заданий.

Таблица 2

Коэффициент	Номер позиции							
	1	1 2 3 4 5						
k_1	0,90	0,85	0,80	0,75	0,70			
k_2	0,90	0,85	0,80	0,75	0,70			
k_3	1,05	1,03	1,00	0,87	0,95			

Пример: шифр варианта – $135 - k_1 = 0,90, k_2 = 0,80, k_3 = 0,95.$

Лабораторная работа 3 (4 часа)

РАСЧЁТ ДИАПАЗОНА ВЫСОТ И СКОРОСТЕЙ УСТАНОВИВШЕГОСЯ ГОРИЗОНТАЛЬНОГО ПОЛЁТА И СКОРОПОДЪЁМНОСТИ САМОЛЁТА С ТРД УПРОЩЁННЫМ МЕТОДОМ ТЯГ

1-е занятие (2 часа)

Выбор расчётных высот

Принять: H = 0, 4, 8, 11 (13) км.

Выписать на бланк соответствующие значения Δ , a, q_a .

Определение максимального аэродинамического качества

Максимальное аэродинамическое качество K_{max} определяется графически, по поляре самолёта (см. рис. 1, б), соответствующей $\delta_{\text{мех}}=0$. Проводится касательная к поляре самолёта из начала координат, снимается в точке касания значение наивыгоднейшего коэффициента подъёмной силы C_{ya} нв и определяется C_{xa} . Числовые значения таковы:

$$C_{ya \text{ HB}} \cong 0.52; \quad K_{max} = \frac{C_{ya \text{ HB}}}{C_{xa}(C_{ya \text{ HB}})} \approx 14.6.$$

Здесь же определяется максимальный коэффициент аэродинамической подъёмной силы самолёта при неотклонённой механизации

$$C_{ya\;max} \approx 1.30.$$

Выбор расчётных скоростей (чисел Маха)

Предварительно рассчитывается минимальная скорость установившегося горизонтального полёта для H=0:

$$V_{\min_{\Gamma,\Pi}}(H) > V_{\min_{\Gamma,\Pi}}(0); \quad V_{\min_{\Gamma,\Pi}}(0) = \sqrt{\frac{2mg}{\rho_0 S C_{ya \ max}}}.$$

и наивыгоднейшая скорость установившегося горизонтального полёта

$$V_{\text{HB}}(0) = \sqrt{\frac{2mg}{
ho_0 S C_{ya \text{ HB}}}} = V_{\min \Gamma.\Pi} \sqrt{\frac{C_{ya \text{ max}}}{C_{ya \text{ HB}}}}.$$

Пересчёт минимальной и наивыгоднейшей скоростей на другие высоты (до высоты порядка 10 км) производится согласно формулам

$$V_{\min_{\Gamma,\Pi}}(H) = V_{\min_{\Gamma,\Pi}}(0) \frac{1}{\sqrt{\Delta}},$$
$$V_{\text{HB}}(H) = V_{\text{HB}}(0) \frac{1}{\sqrt{\Delta}}.$$

Замечание. На высотах H > 10 км минимальная скорость горизонтального полёта, как правило, определяется не коэффициентом $C_{ya\ max}$, а уровнем располагаемой тяги $P_p(H,V)$; наивыгоднейшая скорость лежит в околозвуковом диапазоне и точнее определяется графически, как точка минимума потребной тяги $P_{\Pi}(H,V)$ на кривой Н.Е. Жуковского.

Полученные значения скоростей пересчитываются в числа Маха: M = V/a(H). Дополнительно в расчёт включаются следующие числа Маха: 0,5; 0,7; 0,8; 0,9 (0,95). Окончательно для каждой высоты расчётными числами Маха будут:

$$M_{\min_{\Gamma,\Pi}};$$
 0,5; $M_{\text{HB}};$ 0,7; 0,8; 0,9; (0,95).

<u>Расчёт тяги, потребной для установившегося</u> <u>горизонтального полёта самолёта</u>

Предварительно рассчитывается минимальная потребная тяга: $P_{\Pi \ min} = mg/K_{max}.$

Расчёт потребных тяг для каждой высоты и скорости (числа M) горизонтального установившегося полёта, проводится по схеме

$$V$$
 (или $M) \longrightarrow \mathcal{C}_{ya} \longrightarrow \mathcal{C}_{xa} ig(M, \mathcal{C}_{ya} ig) \longrightarrow K \longrightarrow P_{\Pi}.$

Коэффициент лобового сопротивления C_{xa} снимается с графиков семейства полётных поляр самолёта для соответствующих чисел Маха. Первая кривая семейства условно считается «докритической» полярой и может использоваться для любого $M \leq 0.7$.

Результаты расчёта оформляются в виде таблиц (табл. 3) для каждой высоты (всего получается четыре или пять таблиц).

Таблица 3

М	$M_{\min \Gamma.\Pi}$	$M_{_{ m HB}}$	0,5	0,7	0,8	0,9	0,95
V, м/с							
$C_{ya} = \frac{mg}{q_a S M^2}$	1,3	0,52					
$C_{xa}(M,C_{ya})$	0,15	0,036					
$C_{ya} = \frac{mg}{q_a S M^2}$ $C_{xa}(M, C_{ya})$ $K = \frac{C_{ya}}{C_{xa}}$	8,67	14,6					
$P_{\Pi} = \frac{mg}{K}$							
$P_{\rm p} = P_0 \xi(M, H)$							
$\Delta P = P_{\rm p} - P_{\rm m}$							
$V_y^* = \frac{\Delta PV}{mg}$							

2-е занятие (2 часа)

Расчёт располагаемых тяг

Расчёт выполняется для тех же высот и чисел Маха, что и ранее (результаты заносятся в табл. 3):

$$P_{\rm p}(M,H) = P_0 \xi(M,H) = k_3 P_{0{\scriptscriptstyle {
m HOM}}} \xi(M,H).$$

Значения $\xi(M,H)$ снимаются с высотно-скоростных характеристик двигателя (рис. 1, 2) для указанных высот: H=0, 4, 8, 11 (13) км.

Построение диаграммы потребных и располагаемых тяг

По результатам предыдущих расчётов строится совмещённая диаграмма потребных и располагаемых тяг. Примерный

вид диаграммы показан на рис. 2. Значения тяги берутся в ньютонах (или килоньютонах), скорости – в метрах в секунду.

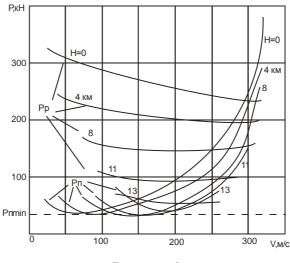


Рисунок 2

Построение диапазона высот и скоростей установившегося горизонтального полёта самолёта

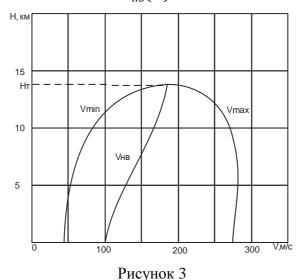

Для каждой высоты в табл. 4 заносят характерные скорости горизонтального полёта.

Таблица 4

Характерная	Н, км				
скорость	0	4	8	11	
$V_{\min_{\Gamma,\Pi}, M/c}$					
$V_{\rm HB}$, M/c					
V_{max} , м/с					

Максимальная скорость горизонтального полёта определяется правой точкой пересечения графиков потребных и располагаемых тяг: минимальная и наивыгоднейшая скорости для малых и средних высот рассчитаны ранее, а для больших высот снимаются с диаграммы потребных и располагаемых тяг ($V_{\rm HB}$ соответствует минимальной потребной тяге $P_{\rm II}$ min; V_{min} — левой точке пересечения кривых потребной и располагаемой тяги).

По данным таблицы строятся графики $V_{min}(H)$, $V_{max}(H)$, задающие границы диапазона высот и скоростей (рис. 3). Приближённо определяется предельная высота установившегося горизонтального полёта самолёта — теоретический потолок H_T , строится также зависимость $V_{HB}(H)$.

Расчёт скороподъёмности самолёта

Расчёт избытков тяги и вертикальных скоростей для установившегося режима набора высоты. Расчёт проводится для тех же высот и скоростей (чисел Маха), что и ранее (результаты заносятся в табл. 3):

$$\Delta P = P_{\rm p} - P_{\rm m}, \qquad V_y^* = \frac{\Delta PV}{mg}.$$

По результатам расчёта строятся графики $V_y^*(V)$ для каждой высоты (рис. 4). С графиков снимаются значения максимальных вертикальных скоростей $V_{y\ max}^*$ и соответствующих им скоростей набора высоты V_{Ha6} . Заполняется таблица 5.

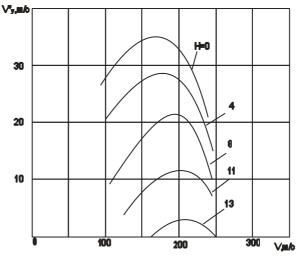


Рисунок 4

Таблица 5

Cycomocomy	Н, км					
Скорости	0	4	8	11		
$V_{y max}^*$, M/C						
<i>V</i> _{наб} , м/с						

Расчёт времени подъёма и построение барограммы набора высоты. Значение $V_{y\ max}^*(0)$ характеризует скороподъёмность самолёта. Из табл. 5 видно, что $V_{\rm Ha6}$ не остаётся постоянной по высотам, т. е. строго говоря, движение самолёта не является установившимся. Однако в первом приближении, для пассажирских и транспортных самолётов можно не вводить поправку на нестационарность движения и считать истинные вертикальные скорости V_y примерно равными вертикальным скоростям, подсчитанным по избыткам тяги, V_y^* .

По результатам табл. 5 строится график $V_{y\,max}^*(H)$ (рис. 5). Уточняется высота теоретического потолка (она соответствует $V_{y\,max}^*=0$). Определяется высота практического потолка $H_{\rm пp}$ (она соответствует $V_{y\,max}^*=3.0$ м/с).

Время набора высоты рассчитывается следующим образом. Для этого с графика $V_{y\,max}^*(H)$ снимаются значения максимальных вертикальных скоростей для высот $H=1,\ 3,\ 5,\ 7,$ 9 км. Эти вертикальные скорости считаются «средними» для диапазонов высот: 0...2 км, 2...4 км, 4...6 км и т. д.

Время, за которое высота изменяется на величину ΔH_i , определится приближённо как

$$\Delta t_{\text{Haf }i} = \frac{\Delta H_i}{V_{y\,\text{max cp}}^{*i}} 10^3.$$

В нашем случае $\Delta H_i = const = 2$ км.

Значения $V_{y\, {
m max\, cp}}^{*i}$, $\Delta t_{{
m Ha6}\, i}$ заносятся в таблицу 6. Полное время набора высоты получается в результате суммирования:

$$t_{\text{Ha6}}(H) = \sum_{i} \Delta t_{\text{Ha6} i}.$$

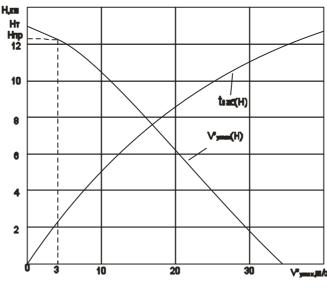


Рисунок 5

Таблица 6

Cyron own own ör ryro own	H_{i}, H_{i+1} , km					
Скороподъёмность	02	24	46	68	810	1012
$V_{y\mathrm{maxcp}}^{*i}$, M/c						
$\Delta t_{\text{наб }i}$, c						
$t_{ m Ha6}(H_{i+1})$, мин						

По результатам расчёта строится барограмма набора высоты $t_{\text{на6}}(H)$ (рис. 5). Она позволяет оценить предельную скороподъёмность самолёта, так как соответствует максимальным значениям вертикальных скоростей.

С барограмм можно снять время набора любой заданной крейсерской высоты (можно принять $H_{\text{крейс}} = 10$ или 11 км.

Отчёт по лабораторной работе

Отчёт оформляется на стандартном бланке. Описание результатов работы даётся в виде формул, таблиц, графиков и пояснений к ним.

Предварительно отчёт предъявляют преподавателю для проверки, затем дают ответы на контрольные вопросы:

- 1. Какой режим полёта можно считать квазиустановившимся?
- 2. Как рассчитать потребную тягу горизонтального полёта?

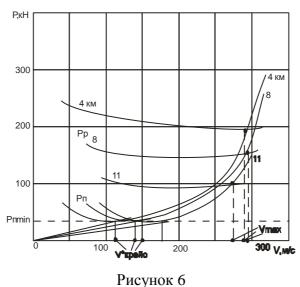
- 3. Чем определяется максимальная скорость горизонтального установившегося полёта? Минимальная скорость?
- 4. Что называется диапазоном высот и скоростей самолёта, теоретическим потолком?
- 5. Что понимается под наивыгоднейшей скоростью горизонтального полёта?
- 6. Почему на кривой Н.Е. Жуковского имеет место минимум потребной тяги?
- 7. Как изменится высота теоретического потолка и скороподъёмность самолёта, если
 - а) его масса уменьшится по сравнению с расчётной?
 - б) располагаемая тяга увеличится по сравнению с расчётной?
- 8. Чем отличаются теоретический и практический потолки самолёта?
- 9. Почему барограмма набора, построенная по $V_{y\,max}^*$, даёт заниженное значение времени набора высоты по сравнению с реальным (для Ту-154 20...21 мин)?
- 10. Что называется скороподъёмностью самолёта? Какие величины служат мерой скороподъёмности?
 - 11. Как рассчитывается барограмма подъёма?

Лабораторная работа 4 (4 часа)

РАСЧЁТ ДАЛЬНОСТИ ПОЛЁТА И ВЗЛЁТНО-ПОСАДОЧНЫХ ХАРАКТЕРИСТИК САМОЛЁТА

1-е занятие (2 часа)

Выбор крейсерских режимов полёта


Режим, обеспечивающий максимальную дальность полёта, соответствует минимальным километровым расходам топлива q_{κ} :

$$q_{\rm K} = \frac{C_{\rm yd}P}{3.6V},$$

здесь $C_{\rm yg}$ — удельный расход топлива, зависящий от высоты и скорости полёта $C_{\rm yg} = C_{\rm yg_0} \bar{C}_{\rm yg}$ (см. рис. 1, д) в сводке исходных данных самолёта принято $C_{\rm yg_0} = 0,058$ кг/Н·ч, V — скорость полёта в м/с, P — тяга в Н.

Для крейсерских режимов полёта, соответствующих высотам порядка 9...11 км и скоростям порядка 800...900 км/ч, можно найти $C_{\rm yd}\approx 0{,}077$ кг/Н·ч. При условии, что $C_{\rm yd}(H,V)\cong const$, минимум километрового расхода соответствует минимальному отношению P/V. Здесь $P=P_{\rm fl}(V)$ — потребная тяга для фиксированной высоты полёта. Минимум легко найти графически, проводя касательные к кривым Жуковского из начала координат (рис. 6). Соответствующая скорость называется условной крейсерской и обозначается $V_{\rm kpe \ddot{u}c}^*$. Расчёт $V_{\rm kpe \ddot{u}c}^*$ следует провести для высот H=4, 8, 11 км.

Режим, обеспечивающий минимальное время полёта по маршруту, соответствует полёту с максимальной скоростью V_{max} (правая граница диапазона высот и скоростей горизонтального установившегося полёта). Значения V_{max} берутся из табл. 4 для трёх указанных высот.

Расчёт километровых расходов топлива

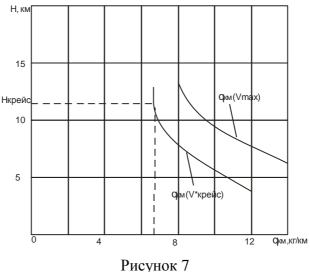

Расчёт выполняется для двух указанных режимов полёта для высот H=4, 8, 11 км. Результаты расчёта сводятся в табл. 7.

Таблица 7

Параметры крейсерско-	Н, км				
го режима	4	8	11		
$V_{ m kpeйc}^*$, м/с					
$P_{V_{\mathrm{крейс}}^*}$, Н					
$q_{\mathrm{K}}^{V_{\mathrm{Kpeŭc}}^*} = \frac{c_{\mathrm{y}_{\mathrm{J}}}P_{V_{\mathrm{Kpeŭc}}^*}}{3.6V_{\mathrm{Kpeŭc}}^*}, \mathrm{KF/KM}$					
V_{max} , M/c					
$P_{V_{max}}$, H					
$q_{\kappa}^{V_{max}} = \frac{c_{y\mu}P_{V_{max}}}{3.6V_{max}}, \kappa\Gamma/\kappa M$					

По результатам расчёта строятся зависимости $q_{\kappa}(H)$ (рис. 7). Определяются высоты, на которых километровый расход достигает минимума для двух указанных режимов полёта. С графика снимаются значения соответствующих километровых расходов (как правило, минимум достигается при $H \approx 11$ км):

$$q_{_{\mathrm{K}}\min}^{V_{\mathrm{крейс}}^{*}}$$
 и $q_{_{\mathrm{K}}\min}^{V_{\max}}$.

Расчёт дальности и продолжительности крейсерского полёта

Режим максимальной дальности

$$L_{ ext{крейс}\ max} = rac{m_{ ext{т крейс}}}{q_{ ext{к min}}^{V_{ ext{крейс}}^*}}; \hspace{0.5cm} T = rac{L_{ ext{крейс}\ max}}{V_{ ext{крейс}}^*}.$$

Режим минимального времени полёта по маршруту

$$L_{ ext{kpeйc}} = rac{m_{ ext{T Kpeйc}}}{q_{ ext{K}\,min}^{V_{max}}}; \qquad T = rac{L_{ ext{Kpeйc}}}{V_{max}}.$$

Масса топлива $m_{\text{т крейс}}$ была рассчитана в начале лабораторной работы 3: $m_{\text{т крейс}} = k_2 m_{\text{т}}$.

Расчёт взлётных и посадочных характеристик самолёта

Определение $lpha_{
m orp}$, $C_{ya\
m orp}$ при отрыве самолёта от земли.

Принимается $\alpha_{\text{отр}} = \alpha_{\text{пос}} = 10^{\circ}$; $C_{va \text{ отр}}$ снимается со «взлётной» зависимости $C_{va}(\alpha)$ для $\alpha_{\text{отр}}$. Получим $C_{va \text{ отр}} \approx 1,5$.

Расчёт скорости отрыва при разбеге самолёта:

$$V_{
m orp} pprox \sqrt{\frac{2m_{
m B3} g}{
ho_0 S C_{ya\
m orp}}}$$

в формулу следует подставить $ho_0=1,\!225~{\rm кг/m}^3,~m_{{\rm взл}}=94000~{\rm кг}.$

<u>Расчёт средней тангенциальной перегрузки при разбеге</u> <u>самолёта</u>

$$n_{xa \text{ cp}} = \frac{P_{\text{cp}}}{m_{\text{B3}\pi}g} - f_{\text{Tp}} - (C_{xa} - C_{ya}f_{\text{Tp}})_{\alpha_{\text{cr}}} \frac{\rho_0 S V_{\text{cp}}^2}{2m_{\text{B3}\pi}g},$$

здесь средняя тяга $P_{\rm cp}\approx 0.95P_0$ берётся в H, средняя скорость разбега $V_{\rm cp}=\sqrt{0.5V_{\rm orp}^2}$, коэффициент трения для бетонной ВПП $f_{\rm Tp}=0.03$; выражение $\left(C_{xa}-C_{ya}f_{\rm Tp}\right)_{\alpha_{\rm cr}}$ вычисляется для стояночного угла атаки $\alpha_{\rm cr}\approx 2^\circ$; причём коэффициенты C_{xa} , C_{ya} берутся по взлётной поляре самолёта: C_{xa} ст ≈ 0.115 , C_{ya} ст ≈ 0.65 .

Расчёт длины разбега при взлёте

$$L_{\rm p} = \frac{V_{\rm orp}^2}{2gn_{xa\,\rm cp}}.$$

Результаты расчёта у всех студентов будут отличаться, так как при постоянстве взлётной массы самолёта тяга P_0 — разная!

Расчёт длины участка набора безопасной высоты

$$L_{\rm ph} = \frac{m_{{\scriptscriptstyle {
m B}}{\scriptscriptstyle {
m J}}{}} g}{(P - X_a)_{
m cp}} \bigg(\frac{V_{
m 6e3}^2 - V_{
m orp}^2}{2g} + H_{
m 6e3} \bigg),$$

здесь принимается $H_{\text{без}}=10.7$ м, $V_{\text{без}}=1.25V_{\text{отр}}$. Поскольку при взлёте $m_{\text{взл}}g\approx Y_a$, то

$$\frac{m_{\rm B3Л}g}{(P-X_a)_{\rm cp}} = \frac{1}{\left(\frac{P}{m_{\rm B3Л}g} - \frac{X_a}{m_{\rm B3Л}g}\right)} \approx \frac{1}{\frac{P_{\rm cp}^*}{m_{\rm B3Л}g} - \frac{1}{K_{\rm B3Л \, cp}}},$$

здесь $(P-X_a)_{\rm cp}$ – средний избыток тяги на участке взлёта самолёта; $P_{\rm cp}^*\approx 0.92P_0$; среднее аэродинамическое качество $K_{\rm взл\ cp}$ можно принять равным 10.

Расчёт длины взлётной дистанции

$$L_{\text{взл}} = L_{\text{p}} + L_{\text{pн}}.$$

Расчёт посадочной скорости

$$V_{\text{noc}} = \sqrt{\frac{2m_{\text{noc}}g}{\rho_0 S C_{ya\,\text{noc}}}}$$

(посадочная масса самолёта для различных вариантов разная и определяется по формуле);

$$m_{\text{пос}} = m_{\text{взл}} - m_{\text{т}}(k_2 + 0.10);$$

 $C_{ya\; {
m noc}}$ снимается с зависимости $C_{ya}(\alpha)$, соответствующей посадочному режиму: для $\alpha_{{
m noc}}=10^{\circ}~C_{ya\; {
m noc}}\approx 1,75$.

Расчёт воздушного участка посадки

$$L_{\rm CB} = K_{\rm noc \, cp} \left(\frac{V_{\rm ch}^2 - V_{\rm noc}^2}{2g} + H_{\rm ch} \right),$$

здесь высота начала снижения $H_{\rm ch}$ принимается равной 15 м, скорость в начале участка снижения $V_{\rm ch}$ принимается равной 1,15 $V_{\rm noc}$. Среднее условное аэродинамическое качество самолёта

на режиме посадки с отклонёнными закрылками можно принять равным 6.

Расчёт средней тангенциальной перегрузки при пробеге самолёта

$$n_{xa \text{ cp}} = \frac{P'}{m_{\text{moc}}g} - f_{\text{np}} - (C'_{xa} - f_{\text{np}}C'_{ya})_{\alpha_{\text{cr}}} \frac{\rho_0 S V_{\text{cp}}^2}{2m_{\text{moc}}g'}$$

здесь средняя скорость на участке пробега принимается $V_{\rm cp} = \sqrt{0.5 V_{\rm noc}^2}$, выражение $\left(C'_{xa} - f_{\rm np} C'_{ya}\right)_{\alpha_{\rm cr}}$ рассчитывается для стояночного угла атаки $\alpha_{\rm cr} \approx 2^{\circ}$ и посадочной конфигурации самолёта (см. рис. 2): $C'_{xa\,{\rm cr}} \approx 0.17$, $C'_{ya\,{\rm cr}} \approx 1.0$; $f_{\rm np}$ — приведённый коэффициент трения (с учётом торможения колёс): $f_{\rm np} \approx 0.25$; тягу P' на участке пробега следует брать равной: $P' \approx 0.05 P_0$ (режим малого газа), $P' \approx -P_{\rm peb}$ (режим реверса тяги).

Значение $P_{\text{рев}}$ приведено в сводке исходных данных самолёта и составляет 2×36 кH = 72 кH. Знак «минус» показывает, что двигатель при реверсе создаёт тормозную тангенциальную перегрузку.

Расчёт длины пробега при посадке

$$L_{\rm np} = \frac{V_{\rm noc}^2}{2g \left| n_{xa \, \rm cp} \right|}$$

с учётом $P'\approx 0.05P_0$ и $P'\approx -P_{\rm peb}$ получим два различных значения $L_{\rm np}^{\rm Man.ras}$, $L_{\rm np}^{\rm peb}$.

Расчёт посадочной дистанции

$$L_{\text{пос}} = L_{\text{св}} + L_{\text{пр}}.$$

Отчёт по лабораторной работе

Отчёт оформляется на стандартном бланке. Описание работы содержит сводку формул, таблиц, результатов расчётов, графиков, пояснений к ним.

После предварительного просмотра отчёта преподавателем студент отвечает на один-два контрольных вопроса:

- 1. Что такое километровый расход топлива? Какова размерность этой величины?
- 2. Почему крейсерский режим (или приближённо режим с минимальным отношением P/V) соответствует высоте, близкой к $H_{\rm T}$ (объяснить по диаграмме тяг)?
- 3. Что называется технической, практической дальностью полёта?
- 4. Почему километровый расход топлива уменьшается с ростом высоты полёта?
- 5. Какие средства механизации используются при взлёте и посадке самолёта?
- 6. Как можно уменьшить посадочную дистанцию?
- 7. Как влияет на посадочную дистанцию величина удельной нагрузки на крыло $\bar{P} = m/S$?
- 8. Как влияет реверс тяги на длину пробега? длину посадочной дистанции?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Динамика полёта самолёта: учебник для вузов [Текст]/ А.В. Ефремов, В.Ф. Захарченко, В.Н. Овчаренко и др.; под ред. академика РАН Г.С. Бюшгенса. М.: Изд-во «Машиностроение», 2011.-76 с. Экземпляров всего: 92.
- 2. Динамика полёта самолёта. Расчёт траекторий и лётных характеристик [Текст]: Конспект лекций / В. Л. Балакин, Ю. Н. Лазарев ; Самар. гос. аэрокосм. ун-т им. С. П. Королёва. Самара: [б. и.], 2002. 55 с. Экземпляров всего: 80 ЧЗ НП (2), Ф (28), ВО-1 (45), СтК (5).
- 3. Расчёт лётных характеристик, продольной устойчивости и управляемости дозвукового самолёта [Электронный ресурс]: учеб. пособие / В. Л. Балакин, Т. А. Баяндина; Самар. гос. аэрокосм. ун-т им. С. П. Королёва. Электрон. дан. (1 файл: 503 Кбайт). Самара: [б. и.], 2004. on-line. Загл. с титул. экрана. Электрон. версия печ. публикации.