База данных процессов с участием

колебательно-возбужденного озона

В таблице 1 представлена созданная на основе анализа данных литературы и собственных результатов база данных процессов с участием колебательновозбужденного озона. Константы скорости некоторых процессов представлены формулой Аррениуса

$$k(T) = A\left(\frac{T}{298 \text{ K}}\right)^n e^{-\frac{E_a}{RT}},$$

где А - коэффициент пропорциональности (частотный фактор),

Т – температура,

Еа – энергия активации,

R = 8.314472 × 10⁻³ кДж/моль×К – универсальная газовая постоянная.

Размерности представленных значений констант скорости зависят от порядка реакции:

для реакций первого порядка (1/с),

второго порядка (см³/с),

третьего порядка (см⁶/с).

Для процессов (75) – (85) в столбце для констант скорости указан соответствующий коэффициент Эйнштейна А_е.

№	Реакция	Т, К	Константа скорости k(T)	А	Еа, кДж/ моль	n	Метод	Лит.
1	$O + O_2 + CH_4 \leftrightarrow O_3(v) + CH_4$	200 - 3000	2.32×10 ⁻²⁷			-2.4	эксп-т	[1]
2	$O + O_2 + N_2 \leftrightarrow O_3(v) + N_2$	200 - 5000	4.7×10 ⁻²⁷			-2.8	теория	[13]
3	$O + O_2 + O_2 \leftrightarrow O_3(v) + O_2$	200-5000	5.1×10 ⁻²⁷			-2.8	теория	[2]
	$O + O_2 + O_2, N_2 \leftrightarrow O_3(000) + O_2, N_2$	500-2000	7.68×10 ⁻³⁵ ; T=500 K	2.79×10 ⁻³⁵	4240		эксп-т	[3]
	$\leftrightarrow O_3(001) + O_2, N_2$	500-2000	5.38×10 ⁻³⁵ ; T=500 K	2.32×10 ⁻³⁵	4240		эксп-т	[3]
	$\leftrightarrow O_3(002) + O_2, N_2$	500-2000	5.09×10 ⁻³⁵ ; T=500 K	1.85×10 ⁻³⁵	4240		эксп-т	[3]
	$\leftrightarrow O_3(003) + O_2, N_2$	500-2000	3.91×10 ⁻³⁵ ; T=500 K	1.42×10 ⁻³⁵	4240		эксп-т	[3]
4	$\leftrightarrow O_{3}(004) + O_{2}, N_{2}$	500-2000	2.91×10 ⁻³⁵ ; T=500 K	1.06×10 ⁻³⁵	4240		эксп-т	[3]
	$\leftrightarrow O_3(005) + O_2, N_2$	500-2000	2.08×10 ⁻³⁵ ; T=500 K	7.59×10 ⁻³⁶	4240		эксп-т	[3]
	$\leftrightarrow O_3(006) + O_2, N_2$	500-2000	1.3×10 ⁻³⁵ ; T=500 K	4.73×10 ⁻³⁶	4240		эксп-т	[3]
	$\leftrightarrow O_{3}(007) + O_{2}, N_{2}$	500-2000	6.96×10 ⁻³⁶ ; T=500 K	2.53×10 ⁻³⁶	4240		эксп-т	[3]
	$\leftrightarrow \mathrm{O}_3(008) + \mathrm{O}_2, \mathrm{N}_2$	500-2000	2.42×10 ⁻³⁷ ; T=500 K	8.80×10 ⁻³⁷	4240		эксп-т	[3]
5	$O_3(008) + O \rightarrow O_2 + O_2$	500-2000	1×10 ⁻¹¹				эксп-т	[3]
6	$O_3(007) + O \rightarrow O_2 + O_2$	500-2000	1×10^{-11}				эксп-т	[3]
7	$O_3(006) + O \rightarrow O_2 + O_2$	500-2000	1×10^{-11}				эксп-т	[3]
8	$O_3(005) + O \rightarrow O_2 + O_2$	500-2000	1×10^{-11}				эксп-т	[3]
9	$O_3(004) + O \rightarrow O_2 + O_2$	500-2000	1×10^{-11}				эксп-т	[3]
10	$O_3(003) + O \rightarrow O_2 + O_2$	500-2000	1×10^{-11}				эксп-т	[3]
11	$O_3(002) + O \rightarrow O_2 + O_2$	500-2000	1×10 ⁻¹¹				эксп-т	[3]
12	$O_3(001) + O \rightarrow O_2 + O_2$	500-2000	1×10 ⁻¹¹				эксп-т	[3]
	$O_3(000) + hv \rightarrow O_3(001)$	500-2000	6.4×10^{-3}				эксп-т	[3]
13	\rightarrow O ₃ (010)	500-2000	6.7×10 ⁻³				эксп-т	[3]
	\rightarrow O ₃ (100)	500-2000	1.2×10^{-4}				эксп-т	[3]
	\rightarrow O ₃ (101)	500-2000	4.2×10 ⁻⁵				эксп-т	[3]

Таблица 1 – База данных процессов с участием колебательно-возбужденного озона

14	$O_3(000) + O_2, N_2 \rightarrow O_3(001) + O_2, N_2$	500-2000	1×10 ⁻¹⁵ ; T=500 K	2.0×10^{-14}	-12471	эксп-т	[3]
15	$O_3(008) + O_2, N_2 \rightarrow O_3(007) + O_2, N_2$	500-2000	$(2.3 \times 10^{-14}) T^{1/2}$			эксп-т	[3]
16	$O_3(007) + O_2, N_2 \rightarrow O_3(006) + O_2, N_2$	500-2000	$(2.0 \times 10^{-14}) T^{1/2}$			эксп-т	[3]
17	$O_3(006) + O_2, N_2 \rightarrow O_3(005) + O_2, N_2$	500-2000	$(1.7 \times 10^{-14}) T^{1/2}$			эксп-т	[3]
18	$O_3(005) + O_2, N_2 \rightarrow O_3(004) + O_2, N_2$	500-2000	$(1.4 \times 10^{-14}) T^{1/2}$			эксп-т	[3]
19	$O_3(004) + O_2, N_2 \rightarrow O_3(003) + O_2, N_2$	500-2000	$(1.2 \times 10^{-14}) T^{1/2}$			эксп-т	[3]
20	$O_3(003) + O_2, N_2 \rightarrow O_3(002) + O_2, N_2$	500-2000	(8.7×10^{-15}) T ^{1/2}			эксп-т	[3]
21	$O_3(002) + O_2, N_2 \rightarrow O_3(001) + O_2, N_2$	500-2000	$(5.8 \times 10^{-15}) T^{1/2}$			эксп-т	[3]
22	$O_3(001) + O_2, N_2 \rightarrow O_3(000) + O_2, N_2$	500-2000	$(2.9 \times 10^{-15}) T^{1/2}$			эксп-т	[3]
23	$O_3(000) + O \rightarrow O_3(001) + O$	500-2000	5×10 ⁻¹³ ; T=500 K	1.0×10^{-11}	-12471	эксп-т	[3]
24	$O_3(000) + O_2, N_2, O \rightarrow O_3(010) + O_2, N_2, O$	500-2000	3.9×10 ⁻¹⁵ ; T=500 K	3.0×10 ⁻¹⁴	-8380	эксп-т	[3]
25	$O_3(001) + O_2, N_2, O \rightarrow O_3(100) + O_2, N_2, O$	500-2000	1×10 ⁻¹¹			эксп-т	[3]
26	$O_3(100) + O_2, N_2, O \rightarrow O_3(001) + O_2, N_2, O$	500-2000	8.3×10 ⁻¹² ; T=500 K	1×10 ⁻¹¹	-731	эксп-т	[3]
27	$O_3(002) + O_2, N_2, O \rightarrow O_3(101) + O_2, N_2, O$	500-2000	1×10 ⁻¹¹			эксп-т	[3]
28	$O_3(101) + O_2, N_2, O \rightarrow O_3(002) + O_2, N_2, O$	500-2000	1×10 ⁻¹¹			эксп-т	[3]
29	$O_3(001) + O_2, N_2, O \rightarrow O_3(010) + O_2, N_2, O$	500-2000	5×10^{-14}			эксп-т	[3]
30	$O_3(100) + O_2, N_2, O \rightarrow O_3(010) + O_2, N_2, O$	500-2000	5×10 ⁻¹⁴			эксп-т	[3]
31	$O_3(010) + O_2, N_2, O \rightarrow O_3(000) + O_2, N_2, O$	500-2000	3×10 ⁻¹⁴			эксп-т	[3]
32	$O_3(010) + O_2, N_2, O \rightarrow O_3(100) + O_2, N_2, O$	500-2000	1.58×10^{-14} ; T=500 K	5×10 ⁻¹⁴	-4813	эксп-т	[3]
33	$O_3(010) + O_2, N_2, O \rightarrow O_3(001) + O_2, N_2, O$	500-2000	1.8×10 ⁻¹⁴ ; T=500 K	5×10 ⁻¹⁴	-4081	эксп-т	[3]
34	$O(^{3}P) + O_{2}(X^{3}\Sigma) + O_{2}(X^{3}\Sigma) \rightarrow O_{3}(\upsilon) + O_{2}(X^{3}\Sigma)$	298	6.0×10 ⁻³⁴ (T/300) ^{-2.6}			эксп-т	[4]
35	$O(^{3}P) + O_{2}(X^{3}\Sigma) + Ar \rightarrow O_{3}(\upsilon) + Ar$	298	$0.63 \times (6.0 \times 10^{-34} (T/300)^{-2.6})$			эксп-т	[5]
36	$O(^{3}P) + O_{2}(X^{3}\Sigma) + He \rightarrow O_{3}(\upsilon) + He$	298	5.1×10 ⁻²⁷ T ^{-2.8}			эксп-т	[6]
37	$O(^{3}P) + O_{2}(X^{3}\Sigma) + N_{2} \rightarrow O_{3}(\upsilon) + N_{2}$	298	5.6×10 ⁻³⁴ (T/300) ^{-2.6}			эксп-т	[7]
38	$O(^{3}P) + O_{2}(X^{3}\Sigma) + CO_{2} \rightarrow O_{3}(\upsilon) + CO_{2}$	298	1.5×10 ⁻³³			эксп-т	[8]
39	$O_3(100,001) + O_2(X^3\Sigma) \rightarrow O_3(010) + O_2(X^3\Sigma)$	298	$1.2 \times 10^{-13} T^{0.5} exp(-26.8/T^{1/3})$			эксп-т	[9]
40	$\Omega_{2}(100,001) + \Lambda r \longrightarrow \Omega_{2}(010) + \Lambda r$	298	5.9×10 ⁻¹⁵			эксп-т	[10]
40	$O_3(100,001) + AI \rightarrow O_3(010) + AI$	298	5.6×10 ⁻¹⁵			эксп-т	[11]
41	$O_3(010) + Ar \rightarrow O_3(000) + Ar$	298	1×10 ⁻¹⁴			эксп-т	[10]
42	$O_2(y=1) + \Lambda r \rightarrow O_2(000) + \Lambda r$	298	7.4×10 ⁻¹⁵			эксп-т	[11]
42	$0_{3}(0-1) + A_{1} \rightarrow 0_{3}(000) + A_{1}$	298	7.3×10 ⁻¹⁵			эксп-т	[12]

43	$O_3(\upsilon \ge 2) + Ar \rightarrow O_3 + Ar$	298	1×10^{-14}				эксп-т	[10]
44	$O_3(100,001) + CO_2 \rightarrow O_3(010) + CO_2$	298	2×10 ⁻¹³				эксп-т	[13]
45	$O_3(010) + CO_2 \rightarrow O_3(000) + CO_2$	298	1×10 ⁻¹³				эксп-т	[13]
46	$O_3(\upsilon \ge 2) + CO_2 \rightarrow O_3 + CO_2$	298	2×10^{-13}				эксп-т	[14]
47	$O_3(\upsilon=1) + CO_2 \rightarrow O_3(000) + CO_2$	298	1.6×10^{-13}				эксп-т	[12]
48	$O_3(000) + CO_2 (\upsilon_3=1) \rightarrow O_3 (100,001) + CO_2$	298	7.6×10 ⁻¹³				эксп-т	[15]
49	$O_3(010) + He \rightarrow O_3(000) + He$	298	1×10 ⁻¹³					[10]
50	$O_3(v \ge 2) + He \rightarrow O_3 + He$	298	1×10 ⁻¹³				эксп-т	[10]
51	$O_3(v=1) + He \rightarrow O_3(000) + He$	298	6×10 ⁻¹⁴				эксп-т	[12]
52	$O_3(010) + N_2 \rightarrow O_3(000) + N_2$	298	$59 \times 10^{-13} T^{0.5} exp(-53.8/T^{1/3})$				эксп-т	[10]
53	$O_3(\upsilon \ge 2) + N_2 \rightarrow O_3 + N_2$	298	$0,5 \times 10^{-13} T^{0,5} exp(-22,8/T^{1/3})$				эксп-т	[16]
54	$O_3(v) + N_2 \leftrightarrow O_3 + N_2$	200-500	4.7×10 ⁻¹⁸			1.53	эксп-т	[9]
55	$O_3(v=1) + N_2 \rightarrow O_3(000) + N_2$	298	1.94×10^{-14}				эксп-т	[12]
56	$O_3(100,001) + O(^{3}P) \rightarrow O_3(000) + O(^{3}P)$	298	8×10 ⁻¹²				эксп-т	[17]
57	$O_3(010) + O({}^{3}P) \rightarrow O_3(000) + O({}^{3}P)$	298	8×10 ⁻¹²				эксп-т	[17]
58	$O_2(a^1\Delta) + O_3(000) \rightarrow 2O_2(X^3\Sigma) + O(^3P)$	298	1.56×10 ⁻¹³ ; T=500 K	5.2×10 ⁻¹¹	-23611		эксп-т	[18]
59	$O_2(a^1\Delta) + O_3(010) \rightarrow 2O_2(X^3\Sigma) + O(^3P)$	298	$5.2 \times 10^{-11} \exp(-(2840 - E^{1,0})/T)$				эксп-т	[18]
60	$O_3(v) + O_2(a^1\Delta) \leftrightarrow O_2 + O_2 + O_2$	200 - 5000	4.1×10 ⁻¹¹				эксп-т	[19]
61	$O_3(000) + O \rightarrow O_3(001) + O$	298	5×10 ⁻¹³ ; T=500 K	1.0×10^{-11}	-12471		эксп-т	[3]
62	$O_3(\upsilon_3=1\div8) + O \rightarrow O_2 + O_2$	298	1.0×10^{-11}				эксп-т	[3]
63	$O_3(v) + O \leftrightarrow O_3 + O$	200 - 5000	3×10 ⁻¹²				эксп-т	[19]
64	$O_3(010) + O \rightarrow O_3(000) + O$	298	3×10 ⁻¹²				эксп-т	[20]
65	$O_3(100,001) + O \rightarrow O_3(010) + O(100,001)$	298	9×10 ⁻¹²				эксп-т	[20]
66	$O_3(v) + O \leftrightarrow O_2 + O_2$	200-5000	1.2×10 ⁻²¹				эксп-т	[19]
67	$O_3(\upsilon \ge 2) + O_2 \rightarrow O_3 + O_2$	298	$0,5 \times 10^{-13} T^{0,5} exp(-22,8/T^{1/3})$				эксп-т	[16]
68	$O_3(v=1) + O_2 \rightarrow O_3 + O_2$	298	3×10^{-15}				эксп-т	[21]
69	$O_3(v) + O_2 \leftrightarrow O_3 + O_2$	200-5000	4.8×10 ⁻¹⁸			1.53	эксп-т	[9]
70	$O_2(a) + O_3(\nu \ge 2) \rightarrow 2O_2(X) + O(_3P)$	298	$(4,1\times1,1)\times10^{-11}$				эксп-т	[22]
71	$O_2(a) + O_3(v=1) \rightarrow O + O_2 + O_2$	298	2.08×10^{-11} ; T=500 K	26×10^{-11}	-10700		эксп-т	[23]
72	$O_3(v) + CO \rightarrow O_3 + CO$	298	$(1,5\pm0,2)\times10^{-13}$				эксп-т	[24]

73	$O_3(\upsilon \ge 2) + O(^3P) \rightarrow 2O_2(X)$	298	1.22×10 ⁻¹¹		эксп-т	[25]
74	$O_3(\upsilon \ge 2) + O(^3P) \rightarrow O_3 + O(_3P)$	298	2.9×10 ⁻¹²		эксп-т	[25]
75	$O_3(008) \to O_3(007) + hv$	298	A _e = 52.1		эксп-т	[3]
76	$O_3(007) \to O_3(006) + hv$	298	A _e = 49.6		эксп-т	[3]
77	$O_3(006) \rightarrow O_3(005) + hv$	298	$A_{e} = 45.9$		эксп-т	[3]
78	$O_3(005) \to O_3(004) + hv$	298	$A_{e} = 41.4$		эксп-т	[3]
79	$O_3(004) \to O_3(003) + hv$	298	$A_{e}=35.8$		эксп-т	[3]
80	$O_3(003) \rightarrow O_3(002) + hv$	298	$A_{e}=28.9$		эксп-т	[3]
81	$O_3(002) \rightarrow O_3(001) + hv$	298	$A_{e}=20.7$		эксп-т	[3]
82	$O_3(001) \rightarrow O_3(000) + hv$	298	$A_{e}=11.2$		эксп-т	[3]
83	$O_3(101) \rightarrow O_3(000) + hv$	298	$A_{e} = 4.1$		эксп-т	[3]
84	$O_3(100) \rightarrow O_3(000) + hv$	298	$A_{e} = 0.5$		эксп-т	[3]
85	$O_3(010) \rightarrow O_3(000) + hv$	298	$A_{e}=0.25$		эксп-т	[3]
86	$O_3(100,001) + O_3 \rightarrow O_3(v=2) + O_3$	298	1.7×10^{-13}		эксп-т	[11]
87	$O_3(010) + O_3 \rightarrow O_3(000) + O_3$	298	8.8×10^{-14}		эксп-т	[11]
88	$O_3(100,001) + O_2 \rightarrow O_3(010) + O_2$	298	5.2×10^{-14}		эксп-т	[26]
	$O_3(010) + O_2 \rightarrow O_3(000) + O_2$	298	3×10 ⁻¹⁴		эксп-т	[26]
89		298	2.27×10^{-14}		эксп-т	[27]
		298	2.0×10^{-14}		эксп-т	[20]
00	$O_3(100,001) + O_2 \rightarrow O_3(010) + O_2$	298	9.4×10^{-15}		эксп-т	[27]
90		298	3.7×10^{-14}		эксп-т	[20]
91	$O_3(v=1) + O_2 \rightarrow O_3(000) + O_2$	298	1.3×10^{-14}		эксп-т	[12]
92	$O_3(v=1) + H_2 \rightarrow O_3(000) + H_2$	298	1.18×10^{-12}		эксп-т	[12]
93	$O_3(v=1) + D_2 \rightarrow O_3(000) + D_2$	298	1.3×10^{-13}		эксп-т	[28]
94	$O_3(v=1) + CH_4 \rightarrow O_3(000) + CH_4$	298	4.8×10 ⁻¹³		эксп-т	[12]
95	$O_3(\upsilon=1) + SO_2 \rightarrow O_3(000) + SO_2$	298	2.35×10 ⁻¹³		эксп-т	[12]
96	$O_3(v=1) + SF_6 \rightarrow O_3(000) + SF_6$	298	1.6×10 ⁻¹²		эксп-т	[12]
97	$O_3(\upsilon=1) + SiF_4 \rightarrow O_3(000) + SiF_4$	298	3.8×10 ⁻¹¹		эксп-т	[15]
98	$O_3(\upsilon=1) + \overline{H_2O \rightarrow O_3(000) + H_2O}$	298	3.5×10 ⁻¹²		эксп-т	[12]
99	$O_3(100,001) + NO \rightarrow O_3(010) + NO$	350	4.8×10 ⁻¹³		эксп-т	[29]

Список использованных источников

- 1. Mulcahy M.F.R., Williams D.J. Kinetics of combination of oxygen atoms with oxygen molecules // Transactions of the Faraday Society 1968. Vol. 64. P. 59-70.
- Atkinson R., Baulch D.L., Cox R.A., Hampson Jr R.F., Kerr J.A., Rossi M.J., Troe J. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry // Journal of Physical and Chemical Reference Data –1997. –Vol. 26, No. 3. P. 521-1011.
- 3. Rawlins W.T. Chemistry of vibrationally excited ozone in the upper atmosphere // Journal of Geophysical Research: Space Physics 1985. Vol. 90, No. A12. P. 12283-12292.
- Rawlins W.T., Caledonia G.E., Armstrong R.A. Dynamics of vibrationally excited ozone formed by three-body recombination. II. Kinetics and mechanism // The Journal of chemical physics – 1987. – Vol. 87, No. 9. P. 5209-5221.
- Braginskiy O. V., Vasilieva A. N., Klopovskiy K. S., Kovalev A. S., Lopaev D. V., Proshina O. V., Rakhimov A. T. Singlet oxygen generation in O₂ flow excited by RF discharge: I. Homogeneous discharge mode: α-mode // Journal of Physics D: Applied Physics 2005. Vol. 38, No. 19. P. 3605-3620.
- Palla A. D., Carroll D. L., Verdeyen J. T., Solomon W. C. Mixing effects in postdischarge modeling of electric discharge oxygen-iodine laser experiments // Journal of applied physics - 2006. – Vol. 100, No. 2. P. 023117.
- Atkinson R., Baulch D. L., Cox R. A., Crowley J. N., Hampson R. F., Hynes R. G., Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II–gas phase reactions of organic species // Atmospheric Chemistry and Physics 2006. Vol. 6. No. 11. P. 3625-4055.
- Kaufman F., Kelso J. R. M effect in the gas-phase recombination of O with O₂ // The Journal of Chemical Physics – 1967. – Vol. 46, No. 11. P. 4541-4543.
- Menard J., Doyennette L., Ménard-Bourcin F. Vibrational relaxation of ozone in O₃–O₂ and O₃–N₂ gas mixtures from infrared double-resonance measurements in the 200–300 K temperature range // The Journal of chemical physics 1992. Vol. 96, No. 8. P. 5773-5780.
- Zeninari V., Tikhomirov B. A., Ponomarev Y. N., Courtois D. Photoacoustic measurements of the vibrational relaxation of the selectively excited ozone (v3) molecule in pure ozone and its binary mixtures with O₂, N₂, and noble gases // The Journal of Chemical Physics – 2000. – Vol. 112, No. 4. P. 1835.
- 11. Hui K.K., Rosen D.I., Cool T.A. Intermode energy transfer in vibrationally excited O₃ // Chemical Physics Letters 1975. Vol. 32, No. 1. P. 141-143.
- 12. Kurylo M.J., Braun W., Kaldor A., Freund S.M., Wayne R.P. Infra-red laser enhanced reactions: chemistry of vibrationally excited O_3 with NO and O_2 (¹ Δ) // Journal of Photochemistry 1974. Vol. 3, No. 1. P. 71-87.

- McDade I. C., McGrath W. D.Ir-laser-induced changes in the uv absorption spectrum of ozone. A new technique for vibrational energy-transfer studies // Chemical Physics Letters – 1980. – Vol. 72, No. 3. P. 432-436.
- 14. Rosen D.I. Vibrational deactivation of O₃(101) molecules in gas mixtures // The Journal of Chemical Physics 1973. Vol. 59, No. 11. P. 6097–6103.
- 15. Braun W., Kurylo M.J., Kaldor A., Wayne R.P. Infrared laser enhanced reactions: Spectral distribution of the NO₂ chemiluminescence produced in the reaction of vibrationally excited O₃ with NO // The Journal of Chemical Physics 1974. Vol. 61, No. 2. P. 461-464.
- Ménard J. Vibrational relaxation of ozone in O₃–O₂ and O₃–N₂ gas mixtures from infrared double resonance measurements in the 200–300 K temperature range // The Journal of Chemical Physics, 1992. pp. 5773–5780.
- Steinfeld J. I., Adler-Golden S. M., Gallagher J. W. Critical survey of data on the spectroscopy and kinetics of ozone in the mesosphere and thermosphere // Journal of physical and chemical reference data – 1987. – Vol. 16, No. 4. P. 911-951.
- Azyazov V. N., Mikheyev P. A., Heaven M. C. On the O₂ (a1Δ) quenching by vibrationally excited ozone // In XVIII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. International Society for Optics and Photonics. 2010. Vol. 7751. P. 77510E.
- Azyazov V.N., Heaven M.C. Kinetics of active oxygen species with implications for atmospheric ozone chemistry // International Journal of Chemical Kinetics – 2015. – Vol. 47, No. 2. P. 93-103.
- West G.A., Weston Jr R.E., Flynn G.W. Deactivation of vibrationally excited ozone by O(³P) atoms // Chemical Physics Letters 1976. Vol. 42, No. 3. P. 488-493.
- 21. Lopaev D.V., Malykhin E.M., Zyryanov S.M. Surface recombination of oxygen atoms in O₂ plasma at increased pressure: II. Vibrational temperature and surface production of ozone // Journal of Physics D: Applied Physics 2010. Vol. 44, No. 1. P. 15202.
- Azyazov V.N., Heaven M.C. Kinetics of active oxygen species with implications for atmospheric ozone chemistry // International Journal of Chemical Kinetics – 2015. – Vol. 47, No. 2. P. 93-103.
- Marinov D., Guerra V., Guaitella O., Booth J.P., Rousseau A. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces // Plasma Sources Science and Technology – 2013. – Vol. 22, No. 5. P. 55018.
- 24. Azyazov V. N., Mikheyev P. A., Postell D., Heaven, M. C. O₂ ¹∆ quenching in O/O₂/O₃/CO₂/He/Ar mixtures // In High Energy/Average Power Lasers and Intense Beam Applications IV. International Society for Optics and Photonics 2010. Vol. 7581. P. 758108.
- West G. A., Weston Jr R. E., Flynn G. W. The influence of reactant vibrational excitation on the O(³P) + O₃ bimolecular reaction rate // Chemical Physics. Letters – 1978. – Vol. 56, No. 3. P. 429–433.
- Adler-Golden S.M., Steinfeld J.I. Vibrational energy transfer in ozone by infrared-ultraviolet double resonance // Chemical Physics Letters – 1980. – Vol. 76, No. 3. P. 479-484.
- 27. Joens J.A., Burkholder J.B., Bair E.J. Vibrational relaxation in ozone recombination // The Journal of Chemical Physics 1982. Vol. 76, No. 12. P. 5902-5916.

- 28. Moy J., Mao C.R., Gordon R.J. The vibrational relaxation of O₃ by He, D₂ and H₂ // The Journal of Chemical Physics 1980. Vol. 72, No. 7. P. 4216-4222.
- 29. Gordon R.J., Lin M.C. The reaction of nitric oxide with vibrationally excited ozone // Chemical Physics Letters 1973. Vol. 22, No. 2. P. 262-268.