

2. Система выдает отчет о решении, с возможностью цветовой и временной визуализации, из анализа которого можно судить о тепловом воздействии на спроектированный распылитель

Симуляция различных физических процессов позволяет оценить конструкторское решение и резко сокращает дорогостоящий экспериментальный анализ.

Вывод

В конечном итоге распылитель был изготовлен и проверен экспериментально, полученные экспериментальные данные были схожи с данными полученными с помощью цифровых методов, отсюда можно сделать вывод что использование таких методов значительно сократит финансовые затраты и время работы производства.

Разработка продукта с помощью цифровых методов в единой среде NX позволяет быстро вносить изменения в продукт и в процесс производства.

Модуль NX является гибкой средой численного моделирования и допускает различные последовательности операций для достижения той или иной цели.

Н.М. Пузанков

ИНФОРМАЦИОННАЯ СИСТЕМА СБОРА И ОЦЕНКИ ДОСТИЖЕНИЙ ОДАРЕННОЙ МОЛОДЕЖИ РОССИИ

(Самарский государственный архитектурно-строительный университет)

В России, как и во многих развитых странах, большое количество одаренной молодежи. Государство заинтересованно в поддержке и поощрении юных талантов, о чем говорит социальный федеральный проект «Талантливая молодёжь».

В данный момент награждаются лишь победители и призёры международных и всероссийских олимпиад, а также победители региональных олимпиад. Но такие награды, не захватывают огромное количество талантливой молодежи, которые в силу обстоятельств или специфики занятий не участвуют в олимпиадах. Поэтому возникает проблема учета и оценки достижений всей одаренной молодежи России.

В связи с вышеизложенной проблемой, мною, совместно с научным руководителем, была поставлена задача разработки системы сбора и оценки достижений одаренной молодежи России, с возможностью проведения статистических исследований, в том числе, получения рейтингов талантливых граждан, для их поощрения.

В данный момент награждается талантливая молодежь, победившая или занявшая призовое место в мероприятиях из данного реестра [1].

В данной ситуации возникает проблема обделенности молодых талантов, по каким-либо причинам не участвующим в мероприятиях из данного реестра.

Также имеется система мониторинга внеучебной деятельности и достижений студентов ФИСТ [2], на которой мы остановимся подробнее.

Рассмотрим функции и принцип её работы. Система предназначена для отслеживания и поощрения талантливых студентов ФИСТ, занимающихся внеучебной деятельностью. Студентов вносят свои достижения и далее эти достижения оцениваются ответственным человекам, которого мы будем называть экспертом. Из достижений студента формируется его личный рейтинг.

В чем же недостаток такого подхода? Самое слабое место системы – это оценка достижений:

- 1. Оценка достижений более чем ста студентов производится одним экспертом, что в некоторых ситуациях приводит к задержке в обновлении информации.
- 2. К эксперту достижения приходят в текстовом виде, форма изложения которого строго не прописана. Это приводит к недостаточности или избыточности информации для оценки достижения.
- 3. Эксперт, как и любой человек, имеет субъективное мнение и оценка достижений, в ряде случаев, может пострадать от этого.
- 4. Нет регламентированной системы оценки достижений, что опять же ведет к неточной оценке достижений.

На основании этого можно предположить, что решением проблем будет создание информационной системы сбора и оценки достижений, в которой будет заложен механизм автоматизированной системы оценки достижений.

Перечислим основные требования, предъявляемые к разрабатываемой информационной системе:

- регистрация пользователей, с получением от них базовой личной информации;
- получение разрешения на обработку и хранение персональных данных пользователей;
- внесение пользователями своих достижений;
- двухэтапная система оценки достижений пользователей;
- получение статистических данных о внесенных достижениях;
- возможность проверки и подтверждения истинности вносимых данных.

Функциональная структура

Для рассмотрения функциональной структуры разработанной системы приводится диаграмма использования (см. рис. 1).

Взаимодействие с системой может происходить на трёх уровнях:

- Уровень пользователя, предназначен для одаренной молодежи. Он позволяет им внести свои достижения, а также просмотреть другие достижения и других пользователей. Они могут просматривать рейтинги по категориям и по всем достижениям.
- Уровень методолога, предназначен для работников организаций, занимающихся отслеживанием и поощрением представителей одаренной молодежи. Позволяет получать статистические данные для дальнейшего анализа.

Уровень администратора. Служит для управления работой всей системы.
Администратор обеспечивает порядок, правильное функционирование системы и оценку подлинности достижений.

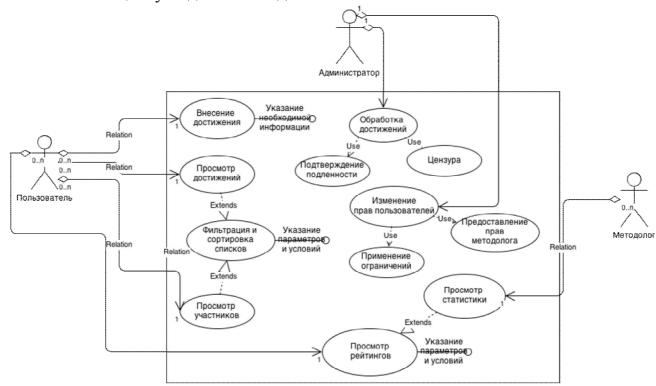


Рис. 1

Математическая модель комплексной оценки достижений

Основные категории достижений: «Спорт», «Наука», «Культура», «Общественная деятельность», «Труд».

Для всех категорий выделены общие критерии, в количестве 10ти: «Уровень значимости достижения», «Формат связанный с достижением», «Ваша роль», «Результат», «Время», «Конкуренция и инновационность сферы достижения», «Мотивация», «Общая занятость», «Материальное состояние», «Интерес к данной области». Каждый из них имеет 4 бала оценки (от одного до четырёх, с шагом один).

Каждый критерий имеет весовой коэффициент, рассчитанный по методу аналитической иерархии Саати[3].

Вектор весов критериев P определяется по данному методу, как нормированный собственный вектор матрицы экспертных оценок A, т.е. из условия A*P=wp, где aij – уровень предпочтения эксперта в паре (i,j). aij выбирается из множества $\{1,3,5,7\}$, aij = 1/ aji; $\sum Pi$ = 1, i=1..n.

W – максимальное по модулю собственное число матрицы A.

Приближенно компоненты P могут быть рассчитаны по формулам $Pi=(\Pi i)1/n/(\sum \Pi i, i=1..n)$. $\Pi i=\Pi aij, i,j=1..n$.

Экспертные оценки были высчитаны с учетом социального опроса [4].

International Scientific Conference "Advanced Information Technologies and Scientific Computing"

1			Уровень значимос ти	Тип меропри ятия	Ваша	Результат	Время	Кол-во конкурен тов	Мотиваци я	Общая занятость	Материал ьное	Интерес к данной области			Beca
	Результат голосования о														
2	важности критерия		16	2	13	8	6	19	10	3	3	6			
3	Уровень значимости достиже	16	1,00	7,00	3,00	5,00	5,00	0,33	5,00	7,00	7,00	7,00	297123,75	3,5	<u>0,230418</u>
4	Формат связанный с достиже	2	0,14	1,00	0,14	0,20	0,33	0,14	0,20	1,00	1,00	0,33	0,00	0,3	<u>0,021079</u>
5	Ваша роль	13	0,33	7,00	1,00	3,00	5,00	0,33	3,00	7,00	7,00	5,00	8404,36	2,5	<u>0,161315</u>
6	Результат	8	0,20	5,00	0,33	1,00	3,00	0,20	1,00	7,00	7,00	3,00	29,11	1,4	0,091542
7	Время	6	0,20	3,00	0,20	0,33	1,00	0,20	0,33	3,00	3,00	1,00	0,02	0,7	0,044958
8	Конкуренция и инновационно	19	3,00	7,00	3,00	5,00	5,00	1,00	5,00	7,00	7,00	7,00	2701125,00	4,4	0,287328
9	Мотивация	10	0,20	5,00	0,33	1,00	3,00	0,20	1,00	5,00	5,00	3,00	15,00	1,3	0,085671
10	Общая занятость	3	0,14	1,00	0,14	0,14	0,33	0,14	0,20	1,00	1,00	3,00	0,00	0,4	0,025364
11	Материальное состояние	3	0,14	1,00	0,14	0,14	0,33	0,14	0,20	1,00	1,00	5,00	0,00	0,4	<u>0,026666</u>
12	Интерес к данной области	6	0,14	3,00	0,20	0,33	1,00	0,14	0,33	0,33	0,20	1,00	0,00	0,4	<u>0,025659</u>
13	ООЛАСТИ	U	5,50	40,00	8,48	16,14	23,99	2,82	16,26	39,33	39,20	35,33		15	1
14			1,27		1,37			0,81		1,00			11,19		-

Рис. 2

Опыт внедрения

Проведя предварительное тестирование прототипа системы, студентами ФИСТ были внесены 500 достижений, которые распределились по категориям в следующем соотношении:

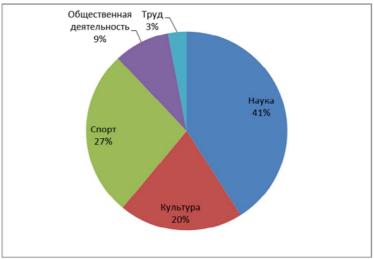


Рис. 3

Проведенное тестирование позволило выявить слабые места системы, а также получить обратные отзывы о системе. Сейчас система со всеми изменениями и дополнениями дорабатывается и готовится к последнему тестированию перед запуском и интеграцией с системой odarmol.ru[3].

Литература

1. Перечень олимпиад и иных конкурсных мероприятий, по итогам которых присуждаются премии для поддержки талантливой молодежи в 2013 году. http://xn--80abucjiibhv9a.xn--

p1ai/%D0%B4%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%8 2%D1%8B/239/%D1%84%D0%B0%D0%B9%D0%BB/1548/%D0%9F%D1%80% D0%B5%D0%BC%D0%B8%D0%B8-

%D0%A2%D0%B0%D0%BB.%D0%BC%D0%BE%D0%BB%D0%BE%D0%B4%D1%91%D0%B6%D1%8C_%D0%9F%D0%B5%D1%80%D0%B5%D1%87%D0%B5%D0%BD%D1%8C_2013.pdf

- 2. Система оценки внеучебной деятельности студентов СГАСУ ФИСТ. http://sciyouth.ru/achievements/
- 3. Мониторинг реализации проектов по обеспечению формирования системы взаимодействия университетов и учреждений общего образования по реализации общеобразовательных программ старшей школы, ориентированных на развитие одаренных детей http://odarmol.ru/

Н.В. Рузанов, В.А. Печенин, М.А. Болотов

ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ДЛЯ АВТОМАТИЗАЦИИ ИЗМЕРЕНИЙ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЛОПАТОК ГАЗОТУРБИННОГО ДВИ-ГАТЕЛЯ

(Самарский государственный аэрокосмический университет им. академика С.П. Королёва (национальный исследовательский университет))

Точность изготовления лопаток компрессора газотурбинного двигателя оказывает значительное влияние на эксплуатационные характеристики ГТД (тяга, удельный расход, газодинамическая устойчивость). В процессе изготовления лопаток необходимо осуществлять контроль геометрических параметров сложной поверхности. В данной работе рассматривается разработка интеллектуальной системы для измерения геометрических параметров и оценки погрешности изготовления лопаток ГТД. В качестве аппаратной части системы выступает прибор, использующий контактный метод измерения поверхности детали посредством измерительного наконечника сферической формы. Измерение осуществляется путем непрерывного скольжения наконечника по измеряемой поверхности и считывания его текущих координат.

Для построения системы проведено функциональное разделение модулей системы и разработана модель информационного обмена между ними (рис 1).

При работе модулей системы используются типы данных, представленные в таблице 1.

Таблица 1 - Типы данных, используемых при взаимодействии модулей

№	Тип данных			
1	Множество контрольных точек для измерения			
2	Система управляющих команд			
3	Координаты измеренных точек в локальной системе координат прибора			
4	Матрица коррекции систематической погрешности			
5	Координаты измеренных точек			
6	Математическая модель измеренного профиля			
7	Погрешность расположения и погрешность формы			