

Результаты работы планируется внедрить в учебный процесс факультета информационных систем и технологий самарского государственного архитектурно-строительного университета.

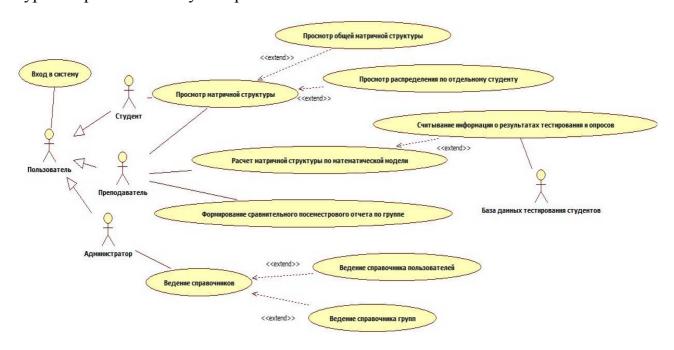


Рис. 1. Диаграмма вариантов использования автоматизированной системы формирования пар «шеф – подшефный»

Литература

- 1. Пиявский С.А. Инновационный вуз в инфокоммуникационной среде, «Экономика. Налоги. Право», №5, 2010 c. 78 82
- 2. С.А.Пиявский, Исследовательская деятельность студентов в инновационном вузе: учебник; СГАСУ. Самара:2011 -198 с.
- 3. Пиявский С.А., Будаев Д.С., Елунин М.Н. Математическое моделирование при формировании целевых программ информатизации сферы культуры, «Актуальные проблемы в строительстве и архитектуре. Образование. Наука. Практика. Материалы 65-й Всероссийской научно-технической конференции по итогам НИР университета за 2007 год Самара, СГАСУ, 2008 с. 123 124

В.А. Печенин, Н.В. Рузанов, М.А. Болотов

ИНФОРМАЦИОННАЯ СИСТЕМА ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА КООРДИНАТНЫХ ИЗМЕРЕНИЙ

(Самарский государственный аэрокосмический университет им. академика С.П. Королёва (национальный исследовательский университет))

В конструкции различных изделий машиностроения присутствуют детали, имеющие сложные поверхности, не описываемые элементарными функциями. Для выборочного контроля и арбитражных измерений таких деталей зачастую используются трёх осевые координатно-измерительные машины (КИМ)

реализующие контактный метод измерений. В работе представлена модульная программа (см. рисунок 1), позволяющая оценивать и анализировать погрешности измерения на КИМ.

Разработан модуль экспорта данных, представленных координатами измеренных и номинальных точек поверхности из системы PC-DMIS. Экспорт данных осуществляется в текстовый файл. Интерфейс модуля представлен на рисунке 2.

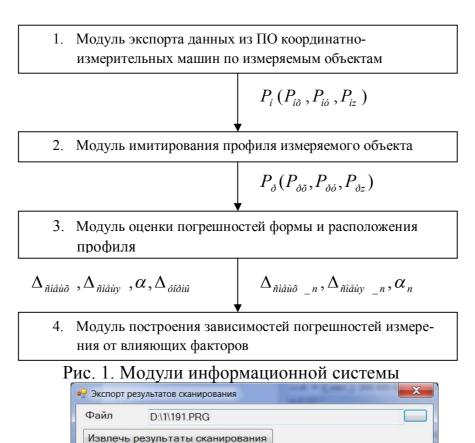


Рис. 2. Интерфейс модуля экспорта данных

С целью определения зависимостей погрешностей измерения от влияющих факторов осуществляется имитация их действия на профиль. В результате формируется имитируемый профиль. Указанную задачу решает модуль имитирования профиля измеряемого объекта. Координаты точек имитируемого профиля находятся из координат точек номинального профиля по формуле:

$$P_p = P_{_H} + \Delta_{\phi o p_{Mbl}} + \Delta_{pacn} \tag{1}$$

Выход

где P_p – координаты точек реального профиля; P_H – координаты точек номинального профиля;

 $\Delta_{\phiop{\scriptscriptstyle Mbl}}$ - погрешность формы профиля, которая находится по формуле:

Список преобразований системы

$$\Delta_{donmal} = \Delta_{zanm} + \Delta_{criv}; \tag{2}$$

PIT 2013

где $\Delta_{\it гарм}$ - гармоническая составляющая погрешности формы профиля точек профиля, которая находится по формуле:

$$\Delta_{capm} = A \cdot \cos((k \cdot x \cdot 2 \cdot \pi) / L_{np}), \tag{3}$$

где A - амплитуда гармонической составляющей;

k - количество периодов гармонической погрешности;

 L_{np} - опорная длина профиля по оси X;

x - координата точки $P_{_{\scriptscriptstyle H}}$;

 $\Delta_{\it \tiny \it capm}$ - случайная составляющая погрешности формы профиля точек профиля;

 $\Delta_{\it pacn}$ - погрешность расположения профиля, которая находится по формуле:

$$\Delta_{pacn} = \Delta_{cmeu} + \Delta_{noe} \tag{4}$$

где $\Delta_{{}_{\!\mathit{CMEU}}}$ - составляющая погрешности расположения, отвечающая за линейное смещение точек профиля;

 $\Delta_{{}_{nos}}$ - составляющая погрешности расположения, отвечающая за поворот точек профиля (характеризуется углом поворота профиля α).

Погрешность реального профиля состоит из погрешности расположения и формы профиля. Для оценки погрешности расположения используется метод наилучшего совмещения номинального и измеренного (оцененного) профилей (припасовки) (рисунок 3). Погрешность формы оценивается после метода наилучшего совмещения.

Рис. 3. Отклонений формы реального профиля от номинального значения после припасовки

Суть припасовки — найти $\Delta_{{}_{\mathit{смещ}}}$ и $\Delta_{{}_{\mathit{nos}}}$ (характеризуется углом поворота) оцененного профиля относительно номинального и преобразовать координаты оцененного профиля на эту погрешность расположения. Это достигается за счет минимизации расстояний между точками реального и номинального профилей.

По точкам припасованного профиля P_{np} строится сплайн (в исследовании Безье 3-й степени). Через точки номинального профиля задаются нормали, находятся точки пересечения с припасованным профилем Е. Расстояния $P_{\rm H}E$ характеризуют погрешность формы профиля.

Припасовка профиля (получение наиболее точных характеристик $\Delta_{\rm \scriptscriptstyle CMEUU}$ и $\Delta_{\rm \scriptscriptstyle noe}$) зависит в частности от геометрических параметров профиля. Погрешность формы является сложной величиной, поэтому ее можно охарактеризовать более простой и удобной для восприятия и оценки величиной — отклонение углов

наклона нормалей в точках реального и номинального профилей (абсолютное и относительное). Общая блок-схема модуля построения данных для анализа погрешности получения припасовки представлена на рисунке 4.

В модуле изменяются амплитуда и период гармонической составляющей имитируемого профиля.

- 1 Этап характеризуется 2 модулем;
- 2 Этап задание сплайнов Безье и получение точек сплайна $P_{p-\tilde{n}\tilde{i}}$, $P_{i-\tilde{n}\tilde{i}}$.
- 3 Этап нахождение на сплайнах реального и номинального профилей с заданных шагом точек (переменная step на схеме) и нахождение нормалей в этих точках.
- 4 Этап Задается цикл с условиями для нахождения абсолютных и относительных разниц углов наклона нормалей реального и номинального профилей
- 5 Этап Нахождение параметров припасовки в соответствии с модулем 3.
- 6 Этап Нахождение относительных отклонений параметров припасовки профилей для различных сочетаний параметров гармонической составляющей погрешности формы.

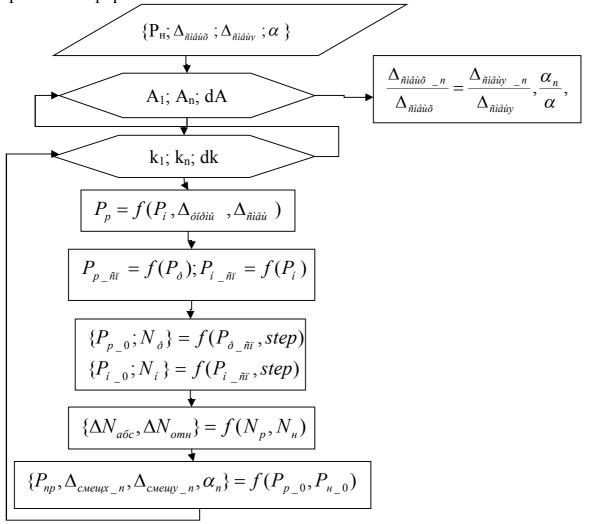


Рис. 4. Блок-схема модуля анализа зависимостей параметров припасовки от параметров формы измеряемого профиля

В процессе анализа было установлено, что изменение параметров гармонической составляющей погрешности формы влияет на получаемые параметры припасовки. Так, увеличение амплитуды (А) и частоты (k) гармонической составляющей, выражаемой отклонением углов наклона нормалей номинального и реального профилей влечет за собой снижение точности припасовки профилей. Разработанная информационная система позволит производить проводить более точные измерения деталей, имеющих сложные поверхности, важные с точки зрения функциональности (таких как лопатки компрессора и турбины, элементы камеры сгорания в ГТД).

Литература

- 1. Роджерс, Д. Математические основы машинной графики [Текст]/Д. Роджерс, Дж. Адамс. М.: Мир, 2001. 604 с.
- 2. Вермель,В.Д. Геометрическое обеспечение оценки точности изготовления изделий сложной формы по материалам измерений на программируемых контрольно-измерительных машинах [Текст]/ В.Д.Вермель, В.Ф.Забалуев, П.М.Николаев // Computer Graphics & Geometry. 1999. Т.1. № 1 50-74 с.
- 3. Rajamohan, G. Effect of probe size and measurement strategies on assessment of freeform profile deviations using coordinate measuring machine [Text]/ G. Rajamohan, M.S. Shunmugam, G.L. Samuel // Measurement. − 2011. − № 44. − Pp. 832-841.

А.Н. Полушин, А.О. Дмитриев, Р.Р. Халиулин

ПРИМЕНЕНИЕ ЦИФРОВЫХ МЕТОДОВ (ПАКЕТА ПРОГРАММ NX) ДЛЯ АНАЛИЗА НАГРУЗОК НА ДЕТАЛИ ГТД

(Казанский национальный исследовательский технический университет им. А.Н. Туполева – КАИ)

NX предлагает систему для проектирования, инженерного анализа, создания документации, оснастки и подготовки производства для всех областей промышленности. Применение NX позволяет значительно сократить время выхода нового и технологичного изделия на рынок, повысить качество, снизить стоимость, повысить коммерческую привлекательность. NX позволяет повторно использовать опыт по всем процессам создания изделия.

В настоящее время главным требованием для бизнеса является непрерывное применение инноваций. Разработка изделия с применением цифровых методов позволяет предлагать заказчикам широкий спектр того, что им требуется. Это обеспечивает успешную конкуренцию на рынке с получением максимальной прибыли. Это обеспечивает лидерство в своей области.

NX для цифрового анализа. Преимущества перед другими программами

- 1. Повышение производительности инженерного анализа на 70 %;
- 2. Повышение качества изделий;