

International Scientific Conference "Advanced Information Technologies and Scientific Computing"

- 5. Воробьев А.В. Математическая модель анизотропного магниторезистивного датчика для инженерных расчетов // Вестник УГАТУ Т.16, №1(46), 2012. С. 161-166.
- 6. Воробьев А.В. Синтез и верификация математической модели анизотропного магниторезистивного мостового сенсора // Датчики и системы №5 2012.-C.40-45

И.А. Лёзин, А.А. Авдиенко

РЕШЕНИЕ ЗАДАЧИ КЛАССИФИКАЦИИ И МНОГОКРИТЕРИАЛЬНОГО ПОИСКА ПРИ ИМПОРТЕ БОЛЬШИХ МАССИВОВ ДАННЫХ

(Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет))

Постановка задачи – имеется файл в некотором формате(например, CSV) с записями о сотрудниках организации, которые нужно импортировать в базу данных, предварительно провалидировав и разделив на классы. Записи могут быть невалидными, повторяющимися, уже существующими в базе, новыми, и т.д. Объем файла довольно велик – например, 20000 строк.

Каждая запись содержит М полей, то есть в файле М колонок и N строк. Некоторые колонки используются для поиска дубликатов записей с учетом их приоритета.

Подробнее о возможных сложностях и проблемах:

- в файле могут быть записи вообще без колонок, по которым производится проверка;
- имя задается в 3 колонках, и никто не гарантирует что Фамилия будет стоять в графе "фамилия";
- ни одна из поисковых колонок не уникальна среди записей, уникальность поддерживается только по группе атрибутов;
- естественно импортируется не весь файл разом, а по частям, поэтому непосредственно в момент валидации мы не видим всего файла целиком.

По результатам импорта формируется отчет.

При работе с большими массивами данных особое внимание следует уделить оптимальности алгоритмов обработки с точки зрения быстродействия и затрачиваемой памяти. Некоторые допущения и возможные упрощения, сделанные для сравнительно небольших размерностей решаемой задачи, зачастую неприменимы к достаточно большим объемам входных данных. Особо это касается задач поиска и т.н. алгоритмической классификации, при решении которых зачастую требуется неоднократный просмотр имеющихся входных массивов.

При решении поставленной задачи использовался следующий алгоритм – входной файл полностью разбирается на лексемы и загружается в оперативную память. Уже в процессе загрузки записи валидируются и разделяются на классы

по набору эвристических критериев. Далее записи, уже прошедшие обработку, разделяются на группы, которые при необходимости импортируются в базу данных (batch update); если добавление не требуется, то они просто учитываются при формировании отчета.

Некоторые из использовавшихся принципов и эвристик:

- перебор сочетаний значений колонок, отвечающих за один атрибут, с дальнейшей перестановкой;
- отброс некоторых более приоритетных полей при наличии заполненной комбинации нескольких менее приоритетных;
- повторная проверка записей с целью перестройки конечного решения в случае появления новых дубликатов.

Система достаточно хорошо разделяет входные данные на классы(число ошибок близко к нулю), но быстродействие довольно невелико. Тем не менее, в первом приближении задачу можно считать выполненной. В дальнейшем, планируется применить нейронные сети при решении задачи классификации, что, теоретически, может позволить достигнуть большего быстродействия при той же точности классификации.

И.А. Лёзин, С.А. Кирьяков

МОРФИНГ РАСТРОВЫХ ИЗОБРАЖЕНИЙ

(Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет))

Морфинг (англ. *morphing*, трансформация) — технология в компьютерной анимации, визуальный эффект, создающий впечатление плавной трансформации одного объекта в другой. Используется в игровом и телевизионном кино, в телевизионной рекламе. Встречается втрёхмерной и двухмерной (как растровой, так и векторной) графике.

Для создания эффекта используются как минимум два изображения, на которых художник задаёт в зависимости от использующегося программного обеспечения опорные фигуры или ключевые точки (т. н. маркеры, или метки), которые помогают компьютеру выполнить правильный морфинг, то есть создать изображения промежуточных состояний (интерполируя имеющиеся данные)[1].

Целью работы было написать программу морфинга человеческого лица, загруженного с фотографии, с мордой лошади взятой из заранее составленной базы.

Основные задачи:

- 1. Составить алгоритм нахождения опорных точк на человеческом лице;
- 2. Составить алгоритм построения полигональной сетки по имеющимся точкам;